

$t\bar{t}+jets/HF$ model and systematics in CMS

Higgs Toppings Workshop - Probing Top-Higgs Interactions at the LHC (Benasque) Carmen Diez Pardos (DESY) and **Matthias Schröder** (KIT) | May 28, 2018

INSTITUT FÜR EXPERIMENTELLE TEILCHENPHYSIK (ETP)

$t\bar{t}+b\bar{b}$: Dominant Background to $t\bar{t}H(b\bar{b})$

- Search for ttH(bb) (leptonic)¹: final states with high jets and b jets multiplicity
- Largest background: $t\bar{t} + jets$
 - Inclusive $t\bar{t} + jets$: $\sigma_{t\bar{t}} = 832 \, pb$
 - Irreducible tt + bb background: $\sigma_{tt+bb} \approx 4 \text{ pb}$
 - $t\bar{t}H$: $\sigma_{t\bar{t}H} = 0.5 \, pb$
- $t\bar{t} + HF$ modeling very challenging
 - CMS 13 TeV measurement of inclusive $t\bar{t} + b\bar{b}$ cross section²: precision $\approx 35\%$

CMS-HIG-17-026, subm. to JHEP

²10.1016/j.physletb.2017.11.043

Matthias Schröder – $t\bar{t}$ + jets/HF model and systematics in CMS

g DODDD	b -	
a lease	200000000000 2000000000000000000000000	

Phase space		$\sigma_{ m t\bar{t}b\bar{b}}$ [pb]	
Visible	Measurement	$0.088 \pm 0.012 \pm 0.029$	
	SM (POWHEG)	0.070 ± 0.009	
Full	Measurement	$4.0 \pm 0.6 \pm 1.3$	
	SM (POWHEG)	3.2 ± 0.4	

Impact of Systematic Uncertainties

Uncertainty source	$\pm \Delta \mu$ (observed)	$\pm \Delta \mu$ (expected)
Total experimental	+0.15/-0.16	+0.19/-0.17
b tagging	+0.11/-0.14	+0.12/-0.11
jet energy scale and resolution	+0.06/-0.07	+0.13/-0.11
Total theory	+0.28/-0.29	+0.32/-0.29
$t\bar{t}\text{+}hf$ cross section and parton shower	+0.24/-0.28	+0.28/-0.28
Size of the simulated samples	+0.14/-0.15	+0.16/-0.16
Total systematic	+0.38/-0.38	+0.45/-0.42
Statistical	+0.24/-0.24	+0.27/-0.27
Total	+0.45/-0.45	+0.53/-0.49

Most important systematic uncertainties related to $t\bar{t} + HF$ modeling

Impact of Systematic Uncertainties

$t\bar{t} + \text{HF Definition}$

- Events classified based on the flavour of the additional jets that do not stem from the decay of a t quark
 - Jets at particle level with $p_{
 m T} > 15\,{
 m GeV},\,|\eta| < 2.5$
 - HF hadrons associated to jets via ghost-hadron matching
- Define 5 tt + X processes:
 - $t\bar{t} + b\bar{b} :\ge 2$ add. jets containing ≥ 1 b-hadrons each
 - $t\bar{t} + b$: 1 add. jet containing 1 b-hadron
 - $t\bar{t} + 2b$: 1 add. jet containing \geq 2 b-hadrons
 - $t\bar{t} + c\bar{c} :\ge 1$ add. jets containing c-hadrons
 - tt + LF : otherwise

Reminder: Analysis Strategy

$t\bar{t}+\text{jets Modelling}$

- Inclusive POWHEG+PYTHIA8 tt NLO simulation
 - CUETP8M2T4 tune, NNPDF3.0
- Normalised to NNLO+NNLL cross section of 832 pb
- Events split into the 5 $t\bar{t} + X$ processes

Shape and normalisation from POWHEG+PYTHIA8

$t\bar{t}+\text{jets}$ Uncertainties

- Rate uncertainties on NNLO tt cross section prediction
 - $\hfill \ensuremath{\bullet}$ Includes ME and PDF, correlated among all $t\overline{t}+X$ processes
- Additional 50 % rate uncertainty per tt + bb, tt + 2b, tt + b, and tt + cc process
 - Conservative prior choice compared to prediction and measurement

$t\bar{t}+\text{jets}$ Uncertainties

- Rate uncertainties on NNLO tt cross section prediction
 - Includes ME and PDF, correlated among all $t\bar{t} + X$ processes
- Additional 50 % rate uncertainty per tt + bb, tt + 2b, tt + b, and tt + cc process
 - Conservative prior choice compared to prediction and measurement
- Shape uncertainty from NNPDF3.0 PDF set used at MC generation
 - Envelope of PDF replicas, correlated among all $t\bar{t} + X$ processes and $t\bar{t}H$
- Shape uncertainty from QCD scales $\mu_{\rm F}$ and $\mu_{\rm R}$ at ME level
 - By reweighting tt sample, correlated among all tt subprocesses and ttH

$t\bar{t}+\text{jets}$ Uncertainties

- Rate uncertainties on NNLO tt cross section prediction
 - $\hfill \ensuremath{\bullet}$ Includes ME and PDF, correlated among all $t\bar{t}+X$ processes
- Additional 50 % rate uncertainty per tt + bb, tt + 2b, tt + b, and tt + cc process
 - Conservative prior choice compared to prediction and measurement
- Shape uncertainty from NNPDF3.0 PDF set used at MC generation
 - Envelope of PDF replicas, correlated among all $t\bar{t} + X$ processes and $t\bar{t}H$
- Shape uncertainty from QCD scales $\mu_{\rm F}$ and $\mu_{\rm R}$ at ME level
 - By reweighting tt sample, correlated among all tt subprocesses and ttH
- Uncertainties on parton shower (PS), ME-PS matching, and underlying event
 - From additional tt samples generated with varied parameters (×0.5, 2)
 - Due to limited statistical precision, conservatively estimated as jet-multiplicity dependent rate uncertainty
 - Independent for each of the $t\bar{t} + X$ classes

- $\hfill\blacksquare$ Sensitivity to $t\bar{t}+HF$ rate changes investigated with toy data
 - varied prior tt + HF uncertainties
 - varied $t\bar{t} + b\bar{b}$ rate in toy data

- Sensitivity to $t\bar{t} + HF$ rate changes investigated with toy data
 - varied prior tt + HF uncertainties
 - varied $t\bar{t} + b\bar{b}$ rate in toy data
- Sensitivity to different tt + bb shapes as expected from Sherpa+OpenLoops
 - Toy data where $t\bar{t}$ $+ \geq$ 1b background template shapes are replaced by Sherpa+OpenLoops (4F) prediction
 - Different injected signal strengths: signal recovered within few percent

- Sensitivity to $t\bar{t} + HF$ rate changes investigated with toy data
 - varied prior tt + HF uncertainties
 - varied $t\bar{t} + b\bar{b}$ rate in toy data
- Sensitivity to different tt + bb shapes as expected from Sherpa+OpenLoops
 - Toy data where $t\bar{t} + \ge 1b$ background template shapes are replaced by Sherpa+OpenLoops (4F) prediction
 - Different injected signal strengths: signal recovered within few percent
- Description of input and control variables verified in data pre-fit and post-fit
- Step-wise unblinding procedure
 - Successively correlating different categories in fit
 - Fitting also control variables

- Sensitivity to $t\bar{t} + HF$ rate changes investigated with toy data
 - varied prior tt + HF uncertainties
 - varied $t\bar{t} + b\bar{b}$ rate in toy data
- Sensitivity to different tt + bb shapes as expected from Sherpa+OpenLoops
 - Toy data where $t\bar{t} + \ge 1b$ background template shapes are replaced by Sherpa+OpenLoops (4F) prediction
 - Different injected signal strengths: signal recovered within few percent
- Description of input and control variables verified in data pre-fit and post-fit
- Step-wise unblinding procedure
 - Successively correlating different categories in fit
 - Fitting also control variables

Fit model robust against rate and shape changes in data

Questions

- Reweighting of Powheg $t\bar{t} + X$ rates to Sherpa prediction
 - Differences essentially covered by uncertainties of predictions, why reweighting?
 - Comparison/validation with data?
- How well do the alternative samples describe the data?
- What was done to validate the input variables?
 - How are the pre-fit normalisation differences corrected? Freely-floating bkgs. sufficient?
- Technicalities of "2-point" uncertainties
 - How converted to up/down variation?
 - MC statistics for alternative generators? Is a template smoothing applied in all cases and what uncertainties are assigned?

Additional Material

Channel	Method	Best-fit μ ±tot (±stat ± syst)
Single-lepton	BDT+MEM	$1.0^{+0.69}_{-0.66} \left(\begin{smallmatrix} +0.31 & +0.62 \\ -0.30 & -0.59 \end{smallmatrix} \right)$
Single-lepton	DNN	$1.0^{+0.58}_{-0.55} \left(\begin{smallmatrix} +0.30 & +0.50 \\ -0.29 & -0.47 \end{smallmatrix} \right)$
Dilepton	BDT+MEM	$1.0^{+1.22}_{-1.12} \left(\begin{smallmatrix} +0.65 & +1.04 \\ -0.62 & -0.93 \end{smallmatrix}\right)$
Dilepton	DNN	$1.0^{+1.38}_{-1.36} \left(\begin{smallmatrix} +0.71 & +1.18 \\ -0.69 & -1.18 \end{smallmatrix} \right)$
Combined	BDT+MEM	$1.0^{+0.60}_{-0.57} \left(\begin{smallmatrix} +0.28 & +0.53 \\ -0.27 & -0.51 \end{smallmatrix} \right)$
Combined	DNN	$1.0^{+0.55}_{-0.51} \left(\begin{smallmatrix} +0.27 & +0.47 \\ -0.27 & -0.44 \end{smallmatrix} \right)$