

Fakultät Physik Institut für Kern- und Teilchenphysik

Combining ttjets and ttbb MC Higgs Toppings, May 2018, Benasque

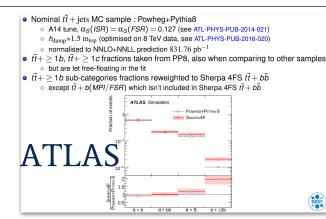
Frank Siegert

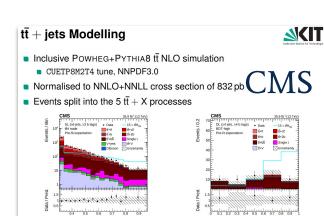
in collaboration with

Stefan Höche (SLAC) & Johannes Krause (TU Dresden), and Judith Katzy & Chris Pollard (DESY)

Disclaimer

- This talk is meant to be a teaser to start discussions. I will
 - explore the necessity to go beyond standalone ttbb@NLO,
 - identify **open questions** related to that,
 - give some answers, but not necessarily all or final!


- Huge effort and progress on NLO+PS ttbb 4F calculations
 - I will take them for granted and simply apply them here.
 - some of the following is related to ttbb 4F discussions; it affects particularly the configurations which cause large differences in ttbb 4F generators

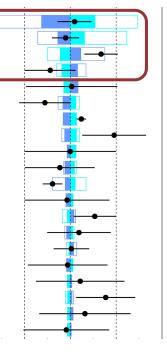

More discussions on those in next talk!

- tt+HF modelling in ATLAS and CMS based on NLO tt + parton shower
- Theory predictions for NLO ttbb + PS available, but used only for:
 - reweighting HF fractions (ATLAS)
 - cross-checks (CMS)
- Reasons for discrepancy?
 - 1. ttbb more "complicated" evgen
 - 2. ttbb is not inclusive!
 need inclusive description to define all HF categories, including light/charm

Shape and normalisation from POWHEG+PYTHIA8

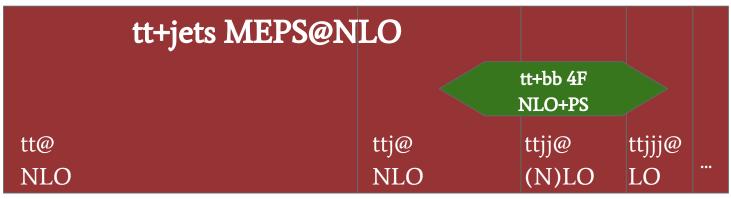
tt+≥1b: PS & hadronization tī+≥1b: ISR / FSR

b-tagging: mis-tag (light) NP I $k(tt+\geq 1b) = 1.24 \pm 0.10$ Jet energy resolution: NP I tTH: cross section (QCD scale) tt+>1b: tt+>3b normalization tī+≥1c: SHERPA5F vs. nominal tt+>1b: shower recoil scheme tf+>1c: ISB / FSB Jet energy resolution: NP II tt+light: PS & hadronization Wt: diagram subtr. vs. nominal b-tagging: efficiency NP I b-tagging: mis-tag (c) NP I E_{τ}^{miss} : soft-term resolution b-tagging: efficiency NP II


tt+≥1b: SHERPA5F vs. nominal tī+≥1b: SHERPA4F vs. nominal

ttH: PS & hadronization

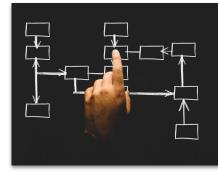
Why listen to this talk combine tt+jets + ttb?


- Largest uncertainties affected by separation into tt (5F) and ttbb (4F)
- Unc's not only large, but also hard to debate with or improve by theorists!
- Parts of unc's are nominal MC stats \rightarrow improvable by using dedicated ttbb within a combined ttjets+ttbb?
- Theoretical impact:
 - better description of additional jet activity
 - better access to multi-scale configurations with • relatively soft $g \rightarrow bb$?

Impact

aka "A Critical Appraisal of Heavy Flavour Overlap Removal"

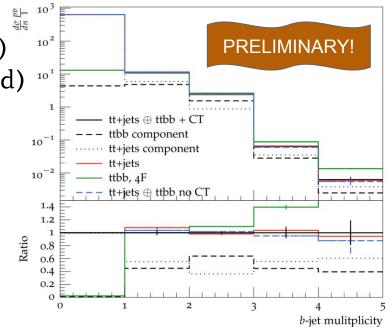
Three main steps:



- 1. HF Overlap removal
- 2. Embedding ttbb as merged contribution
- 3. Matching 4F/5F in PDFs and α_s

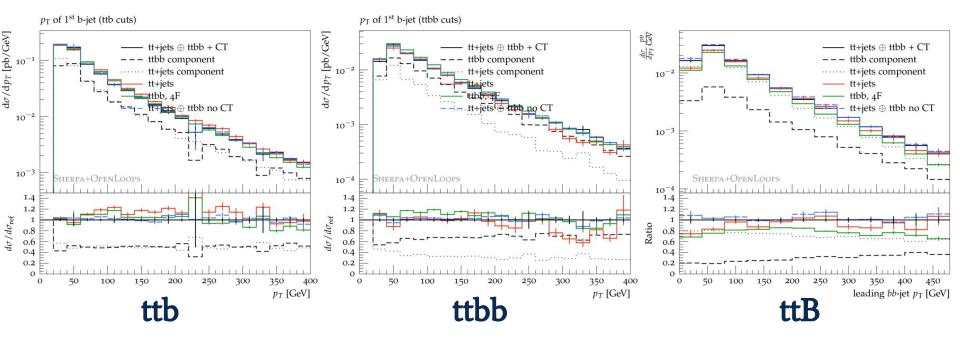
COMPLEXIT

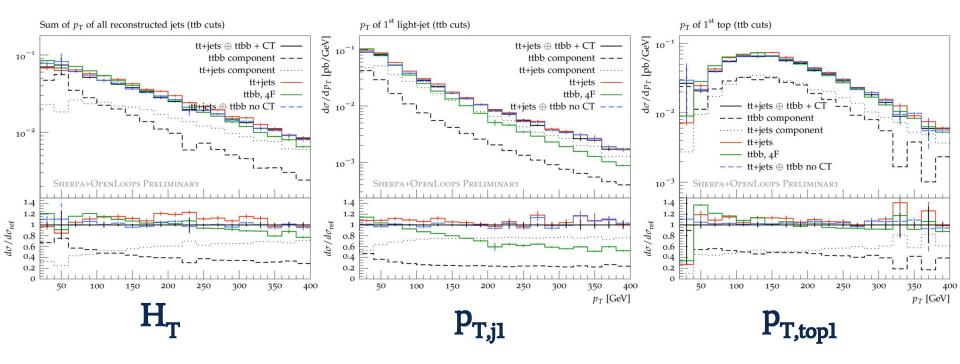
- HFOR used before in experiments in simplified form
 - $dR(b,b)>0.4 \rightarrow keep from ttbb ME$
 - $dR(b,b) < 0.4 \rightarrow keep \text{ from tt ME + bb from PS}$
- Here: from multi-leg merging prescription
 - Cluster full event at PS level using "reverse shower"
 - Look at leading two emissions
 - » Heavy Flavour → keep from **ttbb NLO+PS** simulation
 - » Light Flavour → keep from **tt+jets MEPS@NLO**
 - \Rightarrow Sub(sub)leading g \rightarrow bb splittings not from ttbb ME, but from ttjjjj ME or from PS. Open question: Good or Bad?
- (Extra: caution with b's from "FSR" in top decay products!)

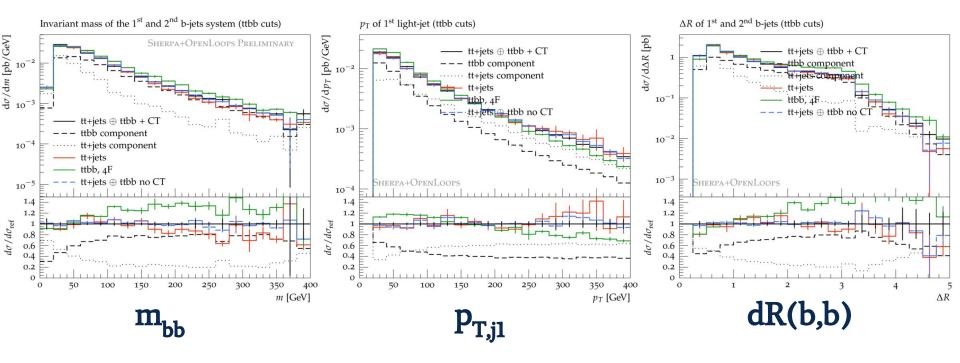

- ttj(j(...)) matrix elements in tt+jets MEPS@NLO undergo special treatment:
 - clustering to get scale hierarchy of ME emissions ("shower history")
 - core scale based on $2 \rightarrow 2$ process
 - application of $\alpha_{\rm S}(\mu_{\rm R}^{2}) \rightarrow \alpha_{\rm S}(p_{\rm T}^{2})$ reweighting for each emission
 - application of Sudakov factors $\Delta(t_1, t_2)$ along internal lines for correct resummation properties
- Same procedure applied to **ttbb NLO+PS** massive calc'n
 - (but no event veto if shower produces hard emission)
 - remains separate standalone ttbb NLO+PS sample, but generated as if within multi-leg merged approach

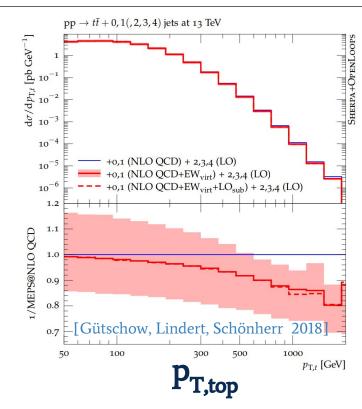
- For consistent combination with tt+jets we produce the massive ttbb NLO+PS with a 5F PDF
 - m_b mismatch with massive NLO matrix elements
 → recycle ideas from FONLL [Forte, Napoletano, Ubiali 2016], but extend
 them to a parton shower picture
 - Basic idea: subtract from **tt+jets MEPS@NLO** the 4F prediction in $m_b \rightarrow 0$ limit by appropriate vetoes and counterterms
 - » Leading Log matching term automatically contained in tt+jets
 PS simulation through overlap removal veto, remaining terms
 by explicit counterterms as event weights
- Additional counter-terms for mismatch between α_s evolution with $m_b = 0$ and virtuals with $m_b \neq 0$

- Comparison of different Sherpa+OpenLoops predictions in typical ttb(b) regions and observables
 - combined tt+jets

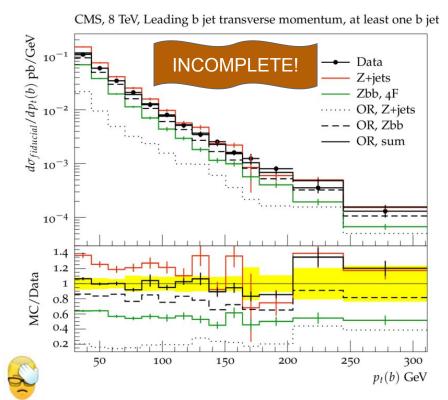

 ttbb
 - » ttbb sub-component (dashed)
 - » tt+jets sub-component (dotted)
 - tt+jets MEPS@NLO (5F) (tt+0,1j@NLO+2,3j@LO)
 - ttbb NLO+PS (4F)
 - for education: full result without counterterms in dashed blue
- NNPDF3.0 (N)NLO PDF sets


Leading HF jet


ttb region

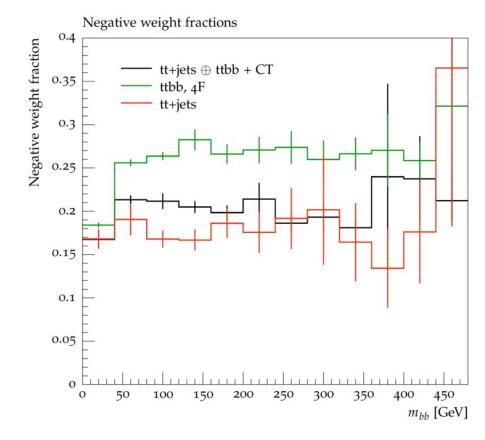


ttbb region



- Only plots with stable tops here, but unstable tops available as well.
- Keep in mind importance of NLO EW for general tt observables
 - We'll probably not have them for ttbb anytime soon?
 - Extend EW_{virt} approach to combined ttjj/ttbb sample?
- ttcc would still come from tt+jets... still better than from PS, but how to ensure sufficient MC statistics?

- Caveat: 4F/5F matching terms beyond LL not applied yet
 - \Rightarrow prediction incomplete
 - first attempt at including them shows 20% deviations
 - \rightarrow debugging!
- Comparing incomplete
 predictions to CMS 8 TeV
 data looks promising though... S



Backup

Negative weight fractions


```
PP_HPSMODE=4
CSS_IS_AS_FAC=1.0
EXCLUSIVE_CLUSTER_MODE=1
```

```
PDF_SET NNPDF30_nlo_as_0118_nf_4
MASSIVE[5]=1
```

CSS_KMODE=34

SCALES VAR{H_TM2/4}{sqrt(MPerp(p[2])*MPerp(p[3])*MPerp(p[4])*MPerp(p[5]))}{H_TM2/4}

Process 93 93 -> 6 -6 5 -5
Order (*,0)
NL0_QCD_Mode MC@NL0
ME_Generator Amegic; RS_ME_Generator Comix; Loop_Generator OpenLoops


```
PP_HPSMODE=4
CSS_IS_AS_FAC=1.0
EXCLUSIVE_CLUSTER_MODE=1
```

```
PDF_SET NNPDF30_nnlo_as_0118
MASSIVE[5]=1
SHERPA_LDADD=ALPHAS_Hook;
```

```
USERHOOK = ALPHAS;
```

```
SCALES METS{MU_F2}{MU_R2}{MU_Q2};
CORE_SCALE VAR{sqr(172.5)+0.5*(PPerp2(p[2])+PPerp2(p[3]))};
```

```
Process 93 93 -> 6 -6 5 -5
Order (*,0)
CKKW sqr(1000);
NLO_QCD_Mode MC@NLO
ME_Generator Amegic; RS_ME_Generator Comix; Loop_Generator OpenLoops
```



```
PP_HPSMODE=4
CSS_IS_AS_FAC=1.0
EXCLUSIVE_CLUSTER_MODE 1;
```

```
PDF_SET NNPDF30_nnlo_as_0118
```

```
SCALES METS{MU_F2}{MU_R2}{MU_Q2};
```

```
CORE_SCALE VAR{sqr(172.5)+0.5*(PPerp2(p[2])+PPerp2(p[3]))};
```

```
NJET:=3; LJET:=2,3; QCUT:=20.;
```

```
Process : 93 93 -> 6 -6 93{NJET};
Order (*,0);
NLO_QCD_Mode MC@NLO {LJET}; CKKW sqr(QCUT/E_CMS);
ME_Generator Amegic {LJET}; RS_ME_Generator Comix {LJET}; Loop_Generator OpenLoops;
```



```
PP_HPSMODE=4
CSS_IS_AS_FAC=1.0
EXCLUSIVE_CLUSTER_MODE 1;
```

```
PDF_SET NNPDF30_nnlo_as_0118
SHERPA_LDADD=FUSING_Hook
USERHOOK = FUSING_HOOK
FUSING_PDF_CORRECTION 1
```

```
SCALES METS{MU_F2}{MU_R2}{MU_Q2};
CORE_SCALE VAR{sqr(172.5)+0.5*(PPerp2(p[2])+PPerp2(p[3]))};
```

```
NJET:=3; LJET:=2,3; QCUT:=20.;
```

```
Process : 93 93 -> 6 -6 93{NJET};
Order (*,0);
NLO_QCD_Mode MC@NLO {LJET}; CKKW sqr(QCUT/E_CMS);
ME_Generator Amegic {LJET}; RS_ME_Generator Comix {LJET}; Loop_Generator OpenLoops;
```