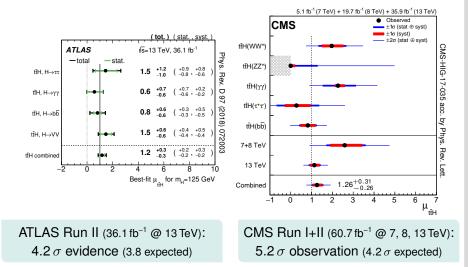


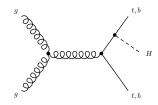
Machine learning at ATLAS and CMS

Higgs Toppings Workshop - Probing Top-Higgs Interactions at the LHC (Benasque)


Georges Aad (CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France) and Matthias Schröder (KIT) | May 31, 2018

INSTITUT FÜR EXPERIMENTELLE TEILCHENPHYSIK (ETP)

ttH Status

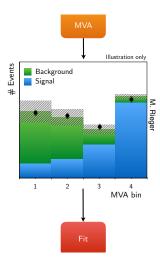


ttH Challenges

- Small tterm production crosssection of $\approx 0.5 \, \text{pb}$ at 13 TeV
- Combination of tt and H decays: multitude of possible final states with many objects
 - Jets and b jets
 - Light leptons and hadronic \(\tau\)s
 - Photons
- Complimentary challenges
 - $H \rightarrow \gamma \gamma, ZZ$: high purity, tiny rate
 - H \rightarrow multileptons: intermediate, small rate, difficult experimental and $t\bar{t}+V$ backgrounds
 - $H \rightarrow b\bar{b}$: high rates, difficult $t\bar{t} + jets$ background

Need dedicated machine-learning techniques at various levels

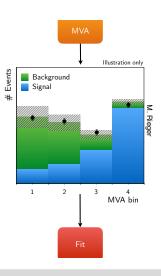
Outline


Outline

- Machine learning at the LHC and in ttH
- Strategy: categorisation, reconstruction, classification
- Binary and multi-classification
- Outline and comparison of strategies, no listing of every analysis detail
- Highlighting items for discussion

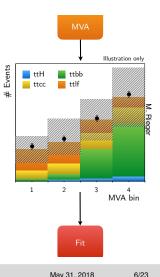
Machine Learning (ML) at the LHC

- Improved sensitivity by multivariate analysis (MVA)
 - Combination of various input variables into single output
- Combination with supervised-learning = machine-learning (ML) techniques
- Boosted Decision Tree (BDT)
 - Established ML technique
 - Robust workhorse for binary classification
- Deep Neural Network (NN)
 - Rather new ML technique at the LHC
 - Artificial neural network with several hidden layers for multi-classification
- Also: likelihood (LH) technique
 - Not an ML technique but important MVA
 - Physics-motivated likelihood ratio discriminant
 - Matrix-Element-Method (MEM) and reco-based LH



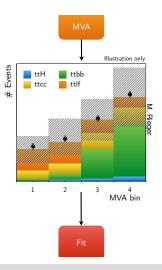
Machine Learning (ML) in tTH

- ML techniques exploited at various levels
- Foremost: final classification
 - Classify event as signal or background
 - Typically: final fit of ML classifier output distributions
- Sensitivity depends on ability to constrain background uncertainties
- Common strategy: multi-step classification
 - Categories enriched in signal and different background processes (=uncertainty)
 - Advanced signal vs background separation



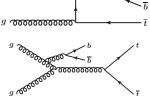
6/23

Machine Learning (ML) in ttH


- ML techniques exploited at various levels
- Foremost: final classification
 - Classify event as signal or background
 - Typically: final fit of ML classifier output distributions
- Sensitivity depends on ability to constrain background uncertainties
- Common strategy: multi-step classification
 - Categories enriched in signal and different background processes (=uncertainty)
 - Advanced signal vs background separation

Machine Learning (ML) in tTH

- ML techniques exploited at various levels
- Foremost: final classification
 - Classify event as signal or background
 - Typically: final fit of ML classifier output distributions
- Other important applications
 - Trigger level
 - Object identification
 - Event reconstruction
 - Event categorisation

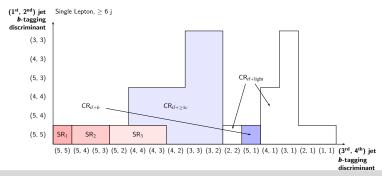


Main example here for ML techniques: search for ttH(bb) production (ATLAS: Phys. Rev. D 97 (2018) 072016, CMS: CMS-HIG-17-026 subm. to JHEP)

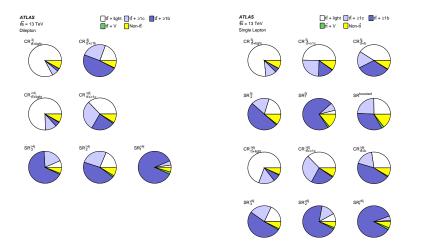
ttH(bb) Production

- Applies similarly to other ttH analyses
- Challenging final state
 - Huge combinatorics in event reconstruction
 - Large background: tt + jets
 - In particular: irreducible tt + bb background (5–10 × signal) with associated large theory uncertainties

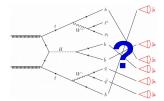
H

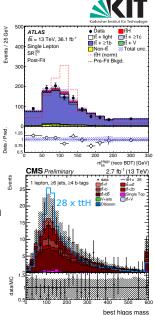

Categorisation

- Goal: separate signal from $t\bar{t} + LF$, $t\bar{t} + \ge 1b$, and $t\bar{t} + \ge 1c$ bkgs.
- Common strategy (ATLAS, CMS dilepton channel): categorisation by jet and b-tagging information


Example from ATLAS

	not tagged	loose	medium	tight	very tight
b jet ID efficiency	—	85%	77 %	70%	60 %
discriminant index	1	2	3	4	5


Categorisation

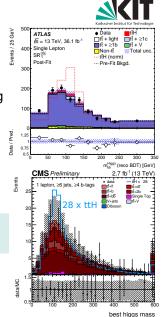


Signal purity < 6 %: need further separation of signal from background

Event Reconstruction

- Reconstruct top and Higgs candidates from final-state objects
 - Additional separating variables for final classification
- Different techniques to find best combination
- ATLAS: BDT
 - Up to 50 % Higgs reconstruction efficiency (if using m_H)
- CMS: χ^2 based
 - $\blacksquare~\approx 30\,\%$ Higgs reconstruction efficiency

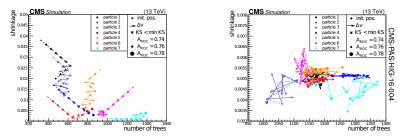
Final Event Classification


- But Higgs mass: sensitivity not sufficient
 - Jet energy resolution
 - Combinatorics in jet assignment

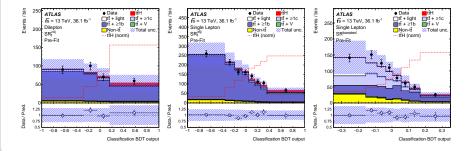
Several discriminating variables separating signal from background

- b-tagging information
- Jet and lepton kinematics
- Angular and event-shape variables
- Invariant masses
- MEM

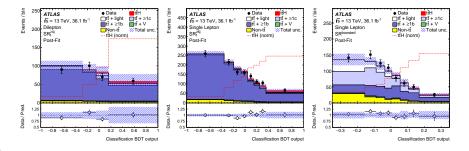
ML-based MVA classifiers combining information from several variables


- Possible further improvements?
 - c-tagging information
 - Jet charge

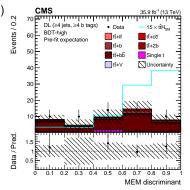
Choice of Configuration and Input Variables


- BDT/NN performance depends on configuration and input variables
- Finding optimal choice high-dimensional problem: solution "by-hand" or with algorithm
- Example: solution based on Particle Swarm Optimisation¹
 - 1. Swarm of candidate BDTs, each initialised at random configuration
 - 2. Random choice of input variables: train and test performance
 - BDTs move to new positions in configuration space, depending on their own and the swarms best previous positions

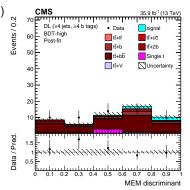
¹Kennedy and Eberhart, doi:10.1109/ICNN.1995.488968



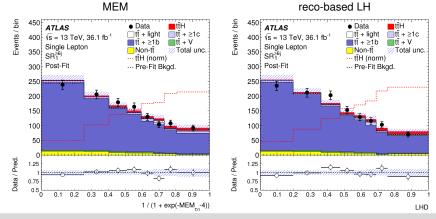
- Example: BDT per category to separate signal from background (ATLAS, CMS dilepton channel)
 - Combination of kinematic variables and output of event reconstruction
 - b-tagging information
 - CMS: continuous b-tagging output improves classification
 - ATLAS: little gain because already used (almost) differentially in categorisation
- Different ML techniques with similar results (after sufficient training)



- Example: BDT per category to separate signal from background (ATLAS, CMS dilepton channel)
 - Combination of kinematic variables and output of event reconstruction
 - b-tagging information
 - CMS: continuous b-tagging output improves classification
 - ATLAS: little gain because already used (almost) differentially in categorisation
- Different ML techniques with similar results (after sufficient training)

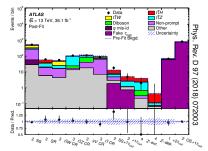


- Example: MEM to separate signal from background (CMS dilepton channel)
 - Pre-classification by BDT
 - MEM in signal-enriched regions targeting tter vs. tter + bb
 - Alternatively, MEM as input variable (ATLAS and CMS, single-lepton channel)
- MEM by construction very powerful against tt + bb
 - Yields up to 10 % improvement in sensitivity
- Relies on LO calculations and per-jet transfer functions associating reconstructed objects and final-state partons
- CPU intensive



- Example: MEM to separate signal from background (CMS dilepton channel)
 - Pre-classification by BDT
 - MEM in signal-enriched regions targeting tt vs. tt + bb
 - Alternatively, MEM as input variable (ATLAS and CMS, single-lepton channel)
- MEM by construction very powerful against tt + bb
 - Yields up to 10 % improvement in sensitivity
- Relies on LO calculations and per-jet transfer functions associating reconstructed objects and final-state partons
- CPU intensive

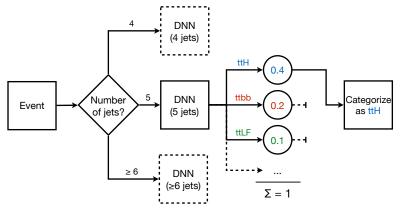
- Example: Reco-based LH to separate signal from background (ATLAS)
 - Less CPU intensive
 - Avoid assumptions of LO and per-jet transfer functions
- Same performance achieved as with MEM


From Binary to Multi-Classification

Example ttH(ML) in ATLAS: different strategies depending on channel

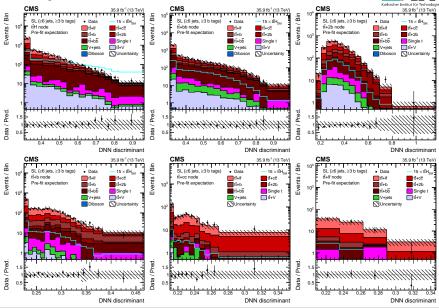
	$2\ell SS$	3ℓ	4ℓ	$1\ell + 2\tau_{had}$	$2\ell SS+1\tau_{had}$	$2\ell OS + 1\tau_{had}$	$3\ell + 1\tau_{had}$
Light lepton	$2T^*$	$1L^*, 2T^*$	2L, 2T	1T	$2T^*$	$2L^{\dagger}$	$1L^{\dagger}, 2T$
$ au_{ m had}$	0M	0M	_	1T, 1M	1M	1M	1M
$N_{\rm jets}, N_{b-\rm jets}$	$\geq 4, = 1, 2$	$\geq 2, \geq 1$	$\geq 2, \geq 1$	$\geq 3, \geq 1$	$\geq 4, \geq 1$	$\geq 3, \geq 1$	$\geq 2, \geq 1$

- 2/: 2 BDTs separating ttH from tt + V and non-prompt lepton backgrounds
 - 2D information mapped into 1D ordered by significance
- 3/: multi-class BDT categorising events as ttH or any of 4 main backgrounds
 - Multi-dimensional binning producing 5 regions dominated by the 5 categories²
 - Fit signal BDT in ttH category
 - 1 bin in background categories


16/23

² "foam" clustering algorithm arxiv:0812.0922

Multi-Classification



Multi-classification with NN to define categories (CMS single-lepton channel)

Categorisation & classification by same ML classifier

Example: \geq 6 Jets

Matthias Schröder - Machine learning at ATLAS and CMS

Binary vs. Multi-Classification

- CMS example: binary classification (with N_{jets}, N_{b-tags} categorisation) vs. multi-classification: better precision with multi-classification
 - Analysis of simulated data using same uncertainty modelling

Channel	Method	Best-fit μ $\pm tot (\pm stat \pm syst)$
Single-lepton	BDT+MEM	$1.0^{+0.69}_{-0.66} \left(\begin{smallmatrix} +0.31 & +0.62 \\ -0.30 & -0.59 \end{smallmatrix} \right)$
Single-lepton	DNN	$1.0^{+0.58}_{-0.55} \left(\begin{smallmatrix} +0.30 & +0.50 \\ -0.29 & -0.47 \end{smallmatrix} \right)$
Dilepton	BDT+MEM	$1.0^{+1.22}_{-1.12} \left(\begin{smallmatrix} +0.65 & +1.04 \\ -0.62 & -0.93 \end{smallmatrix} \right)$
Dilepton	DNN	$1.0^{+1.38}_{-1.36}\left(\begin{smallmatrix}+0.71&+1.18\\-0.69&-1.18\end{smallmatrix}\right)$
Combined	BDT+MEM	$1.0^{+0.60}_{-0.57} \left(\begin{smallmatrix} +0.28 & +0.53 \\ -0.27 & -0.51 \end{smallmatrix}\right)$
Combined	DNN	$1.0^{+0.55}_{-0.51} \left(\begin{smallmatrix} +0.27 & +0.47 \\ -0.27 & -0.44 \end{smallmatrix} \right)$

- Highly non-trivial to compare performance in general
- Can probably obtain same sensitivity with almost all techniques if using sufficient input variables, configuration, and training

Sensitivity Comparison

(40)

 $\pm 1156(\pm 142)$

 ± 8 (± 6)

- Example: S and S/B in most sensitive regions in single-lepton channel ATLAS (SR₁^{$\geq 6j$} + SR₂^{$\geq 6j$}): S = 143, S/B = 3.9%CMS (\geq 6 jets, \geq 3 b-tags, ttH node): S = 142, S/B = 2.8 %
 - Same signal efficiency with b-tagging only categorisation
 - ATLAS smaller inclusive background, CMS smaller tt + > 1b background

		$SR_2^{\geq 6j}$ $SR_2^{\geq 6j}$ $SR_1^{\geq 6j}$		>6i		pre-fit (post-fit) yields					
Sample	Pre-fit Post-fit		Pre-fit Post-fit		Pre-fit SR	Post-fit	Process	tīH node)	tī+bb no	ode
$t\bar{t}H$	85 ± 10	71 ± 52	81 ± 10	68 ± 50	62 ± 11	51 ± 38	tī+lf	1982 (138			(897)
$t\bar{t} + light$	750 ± 370	586 ± 98	$210~\pm~210$	96 ± 33	14 ± 10	12.1 ± 5.8	tī+cē tī+b	1150 (141 549 (70		998 (1 575	(746)
$t\bar{t} + \ge 1c$ $t\bar{t} + \ge 1b$	880 ± 350 2100 ± 420	1330 ± 190 2290 ± 170	350 ± 100 1750 ± 370	473 ± 99 1850 ± 130	53 ± 33 1010 ± 240	44 ± 20 1032 ± 59	tī+2b	306 (23			(215)
$t\bar{t} + \bar{V}$	51.2 ± 7.4	50.8 ± 5.9	40.8 ± 5.7	40.3 ± 4.8	25.8 ± 3.7	25.3 ± 3.2	tī+bb	834 (76		1156 (1	
Non-tt	303 ± 82	267 ± 63	155 ± 52	134 ± 46	75 ± 20	58 ± 17	Single t V + jets	110 (11 38 (3	6) 7)	146 78	(145) (76)
Total Data	4140 ± 850	4590 ± 110 98	2550 ± 510 26	2657 ± 82	1220 ± 250	$\frac{1223 \pm 42}{22}$	tī+V		5)	58	(54)
Data	40	36	20	**1	12	22	Diboson	0.9 (0			(0.5)
							Total bkg.	5049 (473	3)	4575 (4	4447)

ATLAS > 6 jets

• Full result: stat \oplus syst uncertainty on μ

ATLAS: 0.29 (35%) 0.56 (66%)

CMS > 6 jets

 $\pm 1216 (\pm 186)$

 ± 19 (± 15)

142 (108)

 \pm tot unc.

 \pm tot unc.

CMS: 0.24 (33%) 0.38 (53%)

Non-trivial interplay with final classifier

Systematic uncertainties and control regions play most important role

MC Sample Size

- ML classifiers require independent data for training (and validation) and analysis
 - Signal and background class(es) enter training with same weight
 - Increasingly challenging with increasing number of categories/classes
- Mitigation e.g. by cross validation
 - Also, in some cases, train more inclusively than per category (ATLAS)
- Example for tt in single-lepton channel: POWHEG+PYTHIA8

ATLAS	single-lepton decays t $\bar{t}+\geq$ 1b filtered (6 % efficiency)	60 Mio 10 Mio
CMS	single-lepton decays	120 Mio

- "MC stats" 30–50 % of total uncertainty
 - Negative weights add to challenge

MC **sample size critical factor** in analysis, can limit application of ML techniques

Input-Variable Modelling

- Good data-MC agreement required for every single input variable
 - BDT/NN exploit deep correlations
- Careful validation of variables and correlations crucial
- Difficult to find independent control sample but single variables not very sensitive: can look into signal regions
- Discussed on Tuesday

ML techniques require well-modelled variables and correlations

Summary & Conclusions

Machine-learning based MVAs mandatory in many tt channels

- Complex final states ("no clear Higgs mass peak") and low signal purity
- Different background processes with different (large) uncertainties: single binary classification not sufficient
- Common general strategy: multi-step classification
 - 1. Categories enriched in signal and different backgrounds
 - 2. Separation of signal and backgrounds (allows constraining uncertainties)
 - Can be combined (to some extent) using multi-classification ML techniques
- Main challenge (at least in H(bb) channel): control of uncertainties
 - Improve ML techniques for purer control regions (probably incremental)
 - Explore new ML techniques to **reduce dependence on uncertainties** (adversarial training, ...): explicitly construct classifiers to be insensitive to effects with large uncertainties

Additional Material

Input Variables ATLAS (1/3)

Variable	Definition	$\mathrm{SR}_1^{\geq 4j}$	$\mathrm{SR}_2^{\geq 4j}$	$SR_3^{\geq 4}$
General kinema	tic variables			
m_{bb}^{\min}	Minimum invariant mass of a b-tagged jet pair	~	~	-
m_{bb}^{max}	Maximum invariant mass of a b-tagged jet pair	-	-	~
$m_{bb}^{\min \Delta R}$	Invariant mass of the b-tagged jet pair with minimum ΔR	~	-	~
m _{jj} ^{max p} T	Invariant mass of the jet pair with maximum $p_{\rm T}$	~	-	-
$m_{bb}^{\max p_T}$	Invariant mass of the b-tagged jet pair with maximum $p_{\rm T}$	~	-	~
$\Delta \eta_{bb}^{avg}$	Average $\Delta \eta$ for all b-tagged jet pairs	~	~	~
$\Delta \eta_{\ell,j}^{max}$	Maximum $\Delta \eta$ between a jet and a lepton	-	√	\checkmark
$\Delta R_{bb}^{\text{max } p_{\text{T}}}$	ΔR between the b-tagged jet pair with maximum $p_{\rm T}$	-	√	\checkmark
$N_{bb}^{\rm Higgs~30}$	Number of b -tagged jet pairs with invariant mass within 30 GeV of the Higgs-boson mass	~	~	-
$n_{\text{jets}}^{p_T > 40}$	Number of jets with $p_T > 40 \text{ GeV}$	-	√	~
Aplanarity _{b-jet}	$1.5\lambda_2$, where λ_2 is the second eigenvalue of the momentum tensor [100] built with all <i>b</i> -tagged jets	-	~	-
$H_{\mathrm{T}}^{\mathrm{all}}$	Scalar sum of p_T of all jets and leptons	-	-	~
Variables from	reconstruction BDT			
BDT output	Output of the reconstruction BDT	√**	√**	~
m_{bb}^{Higgs}	Higgs candidate mass	1	-	~
$\Delta R_{H,t\bar{t}}$	ΔR between Higgs candidate and $t\bar{t}$ candidate system	√*	-	-
$\Delta R_{H,\ell}^{\min}$	Minimum ΔR between Higgs candidate and lepton	~	√	~
$\Delta R_{H,b}^{\min}$	Minimum ΔR between Higgs candidate and b-jet from top	~	√	-
$\Delta R_{H,b}^{\max}$	Maximum ΔR between Higgs candidate and $b\text{-jet}$ from top	-	√	-
$\Delta R_{bb}^{\rm Higgs}$	ΔR between the two jets matched to the Higgs candidate	-	~	-
Variables from				
$w_{b-\text{tag}}^{\text{Higgs}}$	Sum of b-tagging discriminants of jets from best Higgs can- didate from the reconstruction BDT	-	1	-

Input Variables ATLAS (2/3)

Variable	Definition	$\mathrm{SR}_{1,2,3}^{\geq 6j}$	$\mathrm{SR}_{1,2}^{5\mathrm{j}}$
General kinem	atic variables		
ΔR_{bb}^{avg}	Average ΔR for all b-tagged jet pairs	1	~
$\Delta R_{bb}^{\text{max } p_{\text{T}}}$	ΔR between the two b-tagged jets with the largest vector sum p_T	1	-
$\Delta \eta_{ij}^{max}$	Maximum $\Delta \eta$ between any two jets	1	~
$m_{bb}^{\min \Delta R}$	Mass of the combination of two $b\text{-tagged}$ jets with the smallest ΔR	~	-
$m_{\rm jj}^{\rm min\ \Delta R}$	Mass of the combination of any two jets with the smallest ΔR	-	~
$N_{bb}^{\rm Higgs~30}$	Number of b -tagged jet pairs with invariant mass within 30 GeV of the Higgs-boson mass	~	~
$H_{\mathrm{T}}^{\mathrm{had}}$	Scalar sum of jet p_T	-	~
$\Delta R_{\ell,bb}^{\min}$	ΔR between the lepton and the combination of the two $b\text{-tagged}$ jets with the smallest ΔR	-	~
Aplanarity	$1.5\lambda_2,$ where λ_2 is the second eigenvalue of the momentum tensor [100] built with all jets	~	~
H_1	Second Fox–Wolfram moment computed using all jets and the lepton	1	~
Variables from	reconstruction BDT		
BDT output	Output of the reconstruction BDT	√*	√*
$m_{bb}^{\rm Higgs}$	Higgs candidate mass	1	~
$m_{H,b_{\mathrm{lop top}}}$	Mass of Higgs candidate and b -jet from leptonic top candidate	1	-
$\Delta R_{bb}^{\text{Higgs}}$	ΔR between b-jets from the Higgs candidate	1	~
$\Delta R_{H,t\bar{t}}$	ΔR between Higgs candidate and $t\bar{t}$ candidate system	√*	√*
$\Delta R_{H,\text{lep top}}$	ΔR between Higgs candidate and leptonic top candidate	1	-
$\Delta R_{H,b_{\rm had \ top}}$	ΔR between Higgs candidate and $b\text{-jet}$ from hadronic top candidate	-	\checkmark^*
Variables from	likelihood and matrix element method calculations		
LHD	Likelihood discriminant	1	~
MEM_{D1}	Matrix element discriminant (in $SR_1^{\ge 6j}$ only)	1	-
Variables from	b-tagging (not in $SR_1^{\geq 6j}$)		
$w^{\rm Higgs}_{b-{\rm tag}}$	Sum of b -tagging discriminants of jets from best Higgs candidate from the reconstruction BDT	1	~
B_{jet}^3	3 rd largest jet b-tagging discriminant	 ✓ 	~
$B_{\rm jet}^4$	4 th largest jet b-tagging discriminant	 ✓ 	~
B_{jet}^5	5 th largest jet b-tagging discriminant	1	~

26/23

Input Variables ATLAS (3/3)

Variable	Definition							
Variables from jet reclustering								
$\Delta R_{H,t}$	ΔR between the Higgs-boson and top-quark candidates							
$\Delta R_{t,b^{\mathrm{add}}}$	ΔR between the top-quark candidate and additional <i>b</i> -jet							
$\Delta R_{H,b^{\mathrm{add}}}$	ΔR between the Higgs-boson candidate and additional $b\text{-jet}$							
$\Delta R_{H,\ell}$	ΔR between the Higgs-boson candidate and lepton							
$m_{\rm Higgs\ candidate}$	Higgs-boson candidate mass							
$\sqrt{d_{12}}$	Top-quark candidate first splitting scale [101]							
Variables from b-tagging								
w_{b-tag}	Sum of b-tagging discriminants of all b-jets							
$w^{\rm add}_{b\text{-}{\rm tag}}/w_{b\text{-}{\rm tag}}$	Ratio of sum of b -tagging discriminants of additional b -jets to all b -jets							

Input Variables CMS (1/3)

<u>a</u> <u>a</u>

		(sæ	ags)	$(\geq 6jets, \geq 3b tags$	$DL (\geq 4 \text{ jets}, 3b \text{ tags})$	4 b tag
		$(4 \text{ jets}, \ge 3 \text{ b tags})$	3 b tags)	1	,3b	VI 4
		ž,	(5 jets, ≥	6 jets	4 jet	OL (≥ 4 jets, ≥
		SL (4 j	SL (5)	<u>^ </u>	<u>_</u>	<u> </u>
Variable	Definition	SI	SI	SI	Δ	Δ
$p_T(\text{jet } 1)$	p_T of the highest- p_T jet	+	+	-	-	-
η (jet 1)	η of the highest- p_T jet	-	+	+	-	-
d(jet 1)	b tagging discriminant of the highest- p_T jet	+	+	+	-	-
$p_T(\text{jet } 2)$	p_T of the second highest- p_T jet	-	+	-	-	-
η (jet 2)	η of the second highest- p_T jet	+	+	+	-	-
d(jet 2)	b tagging discriminant of the second highest- $p_{\rm T}$ jet	+	+	+	-	-
$p_{\rm T}({\rm jet}\ 3)$	p_T of the third highest- p_T jet	-	+	-	-	-
η (jet 3)	η of the third highest- p_T jet	+	+	+	-	-
d(jet 3)	b tagging discriminant of the third highest- p_T jet	+	+	+	-	-
$p_{T}(\text{jet } 4)$	p_T of the fourth highest- p_T jet	+	+	-	-	-
η (jet 4)	η of the fourth highest- p_T jet	+	+	+	-	-
d(jet 4)	b tagging discriminant of the fourth highest- p_T jet	+	-	+	-	-
$p_{\rm T}({\rm lep}\ 1)$	p_T of the highest- p_T lepton	-	+	+	-	-
$\eta(\text{lep 1})$	η of the highest- p_T lepton	+	-	+	-	-
d_j^{avg}	average b tagging discriminant value of all jets	+	+	+	-	-
$d_{\rm b}^{\rm avg}$	average b tagging discriminant value of b-tagged jets	+	+	+	+	+
$d_{\rm non-b}^{\rm avg}$	average b tagging discriminant value of non-b-tagged jets	-	-	-	+	+
$\sum_{b} \left(d - d_{b}^{avg} \right)$	squared difference between the b tagging discriminant value of a b-tagged jet and the average b tagging discrimi- nant values of all b-tagged jets, summed over all b-tagged jets	+	+	+	-	-
d_j^{max}	maximal b tagging discriminant value of all jets	+	+	+	-	-
d _b max	maximal b tagging discriminant value of b-tagged jets	+	+	+	-	-
d_j^{min}	minimal b tagging discriminant value of all jets	+	+	+	-	-
d_j^{min}	minimal b tagging discriminant value of b-tagged jets	+	+	+	-	-
<i>d</i> ₂	second highest b tagging discriminant value of all jets	+	+	+	-	

Input Variables CMS (2/3)

Variable	Definition	SL (4 jets, \geq 3 b tags)	SL (5 jets, \geq 3 b tags)	$SL (\geq 6jets, \geq 3 b tags)$	$OL (\geq 4 \text{ jets}, 3b \text{ tags})$	$OL (\geq 4 \text{ jets}, \geq 4 \text{ b tags})$
Nh(tight)	number of b-tagged jets at a working point with a 0.1%	+	+	+		<u> </u>
-(-8-)	probability of tagging gluon and light-flavour jets					
BLR	likelihood ratio discriminating between 4 b quark jets and 2 b quark jets events	+	+	+	-	-
BLR ^{trans}	transformed BLR defined as $\ln[BLR/(1.0 - BLR)]$	+	+	+	-	-
$\Delta R_{j,j}^{min}$	ΔR between the two closest jets	+	+	+	-	-
$\Delta R_{b,b}^{min}$	ΔR between the two closest b-tagged jets	+	+	+	-	-
$\Delta R_{j,j}^{max}$	ΔR between the two jets furthest apart	-	+	-	-	-
$\Delta R_{b,b}^{max}$	ΔR between the two b-tagged jets furthest apart	-	-	+	-	-
$\Delta \eta_{j,j}^{max}$	$\Delta \eta$ between the two jets furthest apart in η	-	-	-	-	+
$\Delta \eta_{b,b}^{max}$	$\Delta\eta$ between the two b-tagged jets furthest apart in η	-	-	-	+	+
$\Delta \eta_{b,b}^{avg}$	average $\Delta \eta$ between b-tagged jets	-	-	+	-	-
$\Delta R_{b,b}^{avg}$	average ΔR between b-tagged jets	-	+	+	-	-
$\Delta R_{j,b}^{avg}$	average ΔR between jets of which at least one is b-tagged	-	-	-	+	-
$\Delta R_{lep,j}^{min\Delta R}$	ΔR between lepton and closest jet	+	+	-	-	-
$\Delta R_{lep,b}^{min\Delta R}$	ΔR between lepton and closest b-tagged jet	-	+	+	-	-
$m_{lep,b}^{min\Delta R}$	mass of lepton and closest b-tagged jet	+	+	+	-	-
$m_{b,b}^{\min\Delta R}$	mass of closest b-tagged jets	+	+	+	-	+
$m_{j,b}^{\min\Delta R}$	mass of closest jets of which at least one is b-tagged	-	-	-	+	-
$m_{b,b}^{\max mass}$	maximal mass of pairs of b-tagged jets	-	-	-	+	+
$p_{T_{b,b}^{\min\Delta R}}$	combined p_T of closest b-tagged jets	-	-	-	+	-
$p_{T_{j,b}^{\min\Delta R}}$	combined $p_{\rm T}$ of closest jets of which at least one is b-tagged	-	-	-	-	+
m_{j}^{avg}	average mass of all jets	+	+	+	-	-
$(m^2)^{\rm avg}_{\rm b}$	average squared mass of all b-tagged jets	+	-	+	-	-
$m_{\rm b,b}^{ m closest \ to \ 125}$	mass of pair of b-tagged jets closest to 125 GeV	-	+	+	-	-
N ^{iji}	number of pairs of b-tagged jets with an invariant mass within $15{\rm GeV}$ of $125{\rm GeV}$	-	-	-	+	+
MEM	matrix element method discriminant	+	+	+		-

Input Variables CMS (3/3)

Variable	Definition	SL (4jets, \geq 3 b tags)	SL (5jets, \geq 3 b tags)	SL (≥ 6 jets, $\geq 3b$ tags)	DL (≥ 4 jets, 3 b tags)	DL (≥ 4 jets, ≥ 4 b tags
H ^j _T	scalar sum of jet p_T	-	+	-	+	-
$H_{\mathrm{T}}^{\mathrm{b}}$	scalar sum of b-tagged jet p_T	+	+	+	-	-
Aİ	$\frac{3}{2}\lambda_3$ where λ_i are the eigenvalues of the momentum tensor built with jets $\cite{2}$	-	+	+	-	-
A^{b}	$\frac{3}{2}\lambda_3$ where λ_i are the eigenvalues of the momentum tensor built with b-tagged jets [?]	+	+	+	-	-
Ci	$H_{\rm T}^{\rm j}$ divided by the sum of the energies of all jets	-	-	+	-	-
C^{b}	$H_{\rm T}^{\rm b}$ divided by the sum of the energies of all b-tagged jets	-	-	+	-	+
Si	$\frac{3}{2}(\lambda_2+\lambda_3)$ where λ_i are the eigenvalues of the momentum tensor built with jets $\cite{2}$	+	+	+	-	-
S^{b}	$\frac{3}{2}(\lambda_2+\lambda_3)$ where λ_i are the eigenvalues of the momentum tensor built with b-tagged jets [?]	-	+	+	-	-
$S_{\mathrm{T}}^{\mathrm{j}}$	$\frac{2\lambda_0}{\lambda_2+\lambda_1}$ where λ_i are the eigenvalues of the momentum tensor built with jets $[\ref{eq:2}]$	+	+	+	-	-
$S_{\rm T}^{\rm b}$	$\frac{2\lambda_2}{\lambda_2+\lambda_1}$ where λ_i are the eigenvalues of the momentum tensor built with b-tagged jets [?]	+	+	+	-	-
$I^{\rm b}$	a measure of how spherical or linear in $r-\phi$ space b-tagged jets are in the event	-	-	-	+	-
H_2	second Fox-Wolfram moment [?]	-	+	-	-	-
H_3	third Fox-Wolfram moment [?]	+	+	-	-	-
$H_3^{\rm b}$	third Fox–Wolfram moment calculated with b-tagged jets [?]	-	-	-	-	+
R_3	ratio of Fox-Wolfram moments H3/H0 [?]	-	-	-	+	-
H_4	fourth Fox-Wolfram moment [?]	+	-	+	-	-