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ATLAS Run II (36.1 fb−1 @ 13 TeV):
4.2σ evidence (3.8 expected)

CMS Run I+II (60.7 fb−1 @ 7, 8, 13 TeV):
5.2σ observation (4.2σ expected)
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t̄tH Challenges

Small t̄tH production cross-
section of ≈ 0.5 pb at 13 TeV
Combination of t̄t and H decays:
multitude of possible final states
with many objects

Jets and b jets
Light leptons and hadronic τs
Photons

g

g

t, b

H

t, b

Complimentary challenges
H→ γγ,ZZ: high purity, tiny rate
H→ multileptons: intermediate, small rate, difficult experimental and
t̄t + V backgrounds
H→ bb̄: high rates, difficult t̄t + jets background

Need dedicated machine-learning techniques at various levels
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Outline

Outline
Machine learning at the LHC and in t̄tH
Strategy: categorisation, reconstruction, classification
Binary and multi-classification

Outline and comparison of strategies, no listing of every analysis detail

Highlighting items for discussion
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Machine Learning (ML) at the LHC
Improved sensitivity by multivariate analysis (MVA)

Combination of various input variables into single output

Combination with supervised-learning =
machine-learning (ML) techniques
Boosted Decision Tree (BDT)

Established ML technique
Robust workhorse for binary classification

Deep Neural Network (NN)
Rather new ML technique at the LHC
Artificial neural network with several hidden
layers for multi-classification

Also: likelihood (LH) technique
Not an ML technique but important MVA
Physics-motivated likelihood ratio discriminant
Matrix-Element-Method (MEM) and
reco-based LH
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Machine Learning (ML) in t̄tH

ML techniques exploited at various levels
Foremost: final classification

Classify event as signal or background
Typically: final fit of ML classifier output
distributions

Sensitivity depends on ability to constrain
background uncertainties
Common strategy: multi-step classification

Categories enriched in signal and different
background processes (=uncertainty)
Advanced signal vs background separation
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Machine Learning (ML) in t̄tH

ML techniques exploited at various levels
Foremost: final classification

Classify event as signal or background
Typically: final fit of ML classifier output
distributions

Sensitivity depends on ability to constrain
background uncertainties
Common strategy: multi-step classification

Categories enriched in signal and different
background processes (=uncertainty)
Advanced signal vs background separation
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 2 Simultaneous fit & event categorization

● Fit expected yields (MC) to data 
simultaneously in all categories / bins 

■ Backgrounds vary within uncertainties, 

constrained by prior (e.g. gaussian) 

■ No/flat prior on signal
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● Idea: Multi-classification DNN 
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Machine Learning (ML) in t̄tH

ML techniques exploited at various levels
Foremost: final classification

Classify event as signal or background
Typically: final fit of ML classifier output
distributions

Other important applications
Trigger level
Object identification
Event reconstruction
Event categorisation

Marcel Rieger - 30.5.18
 2 Simultaneous fit & event categorization

● Fit expected yields (MC) to data 
simultaneously in all categories / bins 

■ Backgrounds vary within uncertainties, 

constrained by prior (e.g. gaussian) 
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t̄tH(bb̄) Production

Main example here for ML techniques: search for t̄tH(bb̄) production
(ATLAS: Phys. Rev. D 97 (2018) 072016, CMS: CMS-HIG-17-026 subm. to JHEP)

Applies similarly to other t̄tH analyses

Challenging final state
Huge combinatorics in event
reconstruction
Large background: t̄t + jets
In particular: irreducible t̄t + bb̄
background (5–10 × signal) with
associated large theory uncertainties
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Categorisation
Goal: separate signal from t̄t + LF, t̄t + ≥ 1b, and t̄t+ ≥ 1c bkgs.
Common strategy (ATLAS, CMS dilepton channel): categorisation by
jet and b-tagging information

Example from ATLAS

not tagged loose medium tight very tight

b jet ID efficiency — 85 % 77 % 70 % 60 %
discriminant index 1 2 3 4 5

Single Lepton, ≥ 6 j

SR1 SR2 SR3

CRtt̄+b CRtt̄+≥1c

CRtt̄+light

(3rd, 4th) jet

bbb-tagging
discriminant

(5, 5) (5, 4) (5, 3) (5, 2) (4, 4) (4, 3) (4, 2) (3, 3) (3, 2) (2, 2) (5, 1) (4, 1) (3, 1) (2, 1) (1, 1)

(1st, 2nd) jet
bbb-tagging

discriminant

(5, 5)

(5, 4)

(4, 4)

(5, 3)

(4, 3)

(3, 3)
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Categorisation

ATLAS
 = 13 TeVs

Dilepton
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Signal purity < 6 %: need further separation of signal from background
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Event Reconstruction

Reconstruct top and Higgs candidates
from final-state objects

Additional separating variables for final
classification

Different techniques to find best combination
ATLAS: BDT

Up to 50 % Higgs reconstruction efficiency
(if using mH)

CMS: χ2 based
≈ 30 % Higgs reconstruction efficiency
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Final Event Classification

But Higgs mass: sensitivity not sufficient
Jet energy resolution
Combinatorics in jet assignment

Several discriminating variables separating
signal from background

b-tagging information
Jet and lepton kinematics
Angular and event-shape variables
Invariant masses
MEM

ML-based MVA classifiers combining
information from several variables

Possible further improvements?
c-tagging information
Jet charge

 (reco BDT) [GeV]Higgs
bbm

0 50 100 150 200 250 300 350

D
at

a 
/ P

re
d.

 

0.5

0.75

1

1.25

1.5

E
ve

nt
s 

/ 2
5 

G
eV

0

100

200

300

400

500
ATLAS

-1 = 13 TeV, 36.1 fbs
Single Lepton

1
6j≥SR

Post-Fit

Data Htt
 + lighttt 1c≥ + tt

1b≥ + tt  + Vtt
tNon-t Total unc.

H (norm)tt
Pre-Fit Bkgd.

best higgs mass
0 100 200 300 400 500 600

Ev
en

ts

0

5

10

15

20

25

data
+lftt
+btt

b+btt
V+jets
Diboson

H x 28tt
c+ctt

+2btt
Single Top
+Vtt

best higgs mass
0 100 200 300 400 500 600

da
ta

/M
C

0.5

1

1.5

(13 TeV)-12.7 fbCMS Preliminary

4 b-tags≥6 jets, ≥1 lepton, 

28 x ttH
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Choice of Configuration and Input Variables
BDT/NN performance depends on configuration and input variables
Finding optimal choice high-dimensional problem:
solution “by-hand” or with algorithm
Example: solution based on Particle Swarm Optimisation1

1. Swarm of candidate BDTs, each initialised at random configuration
2. Random choice of input variables: train and test performance
3. BDTs move to new positions in configuration space, depending on their

own and the swarms best previous positions
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1Kennedy and Eberhart, doi:10.1109/ICNN.1995.488968
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Binary Classification

Example: BDT per category to separate signal from background
(ATLAS, CMS dilepton channel)

Combination of kinematic variables and output of event reconstruction
b-tagging information

CMS: continuous b-tagging output improves classification
ATLAS: little gain because already used (almost) differentially in categorisation

Different ML techniques with similar results (after sufficient training)

Classification BDT output
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Binary Classification

Example: BDT per category to separate signal from background
(ATLAS, CMS dilepton channel)

Combination of kinematic variables and output of event reconstruction
b-tagging information

CMS: continuous b-tagging output improves classification
ATLAS: little gain because already used (almost) differentially in categorisation

Different ML techniques with similar results (after sufficient training)
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Binary Classification

Example: MEM to separate signal from background
(CMS dilepton channel)

Pre-classification by BDT
MEM in signal-enriched regions targeting t̄tH vs. t̄t + bb̄
Alternatively, MEM as input variable
(ATLAS and CMS, single-lepton channel)

MEM by construction very powerful
against t̄t + bb̄

Yields up to 10 % improvement in
sensitivity

Relies on LO calculations and per-jet
transfer functions associating
reconstructed objects and final-state
partons

CPU intensive
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Binary Classification

Example: MEM to separate signal from background
(CMS dilepton channel)

Pre-classification by BDT
MEM in signal-enriched regions targeting t̄tH vs. t̄t + bb̄
Alternatively, MEM as input variable
(ATLAS and CMS, single-lepton channel)

MEM by construction very powerful
against t̄t + bb̄

Yields up to 10 % improvement in
sensitivity

Relies on LO calculations and per-jet
transfer functions associating
reconstructed objects and final-state
partons

CPU intensive
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Binary Classification
Example: Reco-based LH to separate signal from background
(ATLAS)

Less CPU intensive
Avoid assumptions of LO and per-jet transfer functions

Same performance achieved as with MEM
MEM reco-based LH
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From Binary to Multi-Classification
Example t̄tH(ML) in ATLAS: different strategies depending on channel

2`SS 3` 4` 1`+2τhad 2`SS+1τhad 2`OS+1τhad 3`+1τhad
Light lepton 2T* 1L*, 2T* 2L, 2T 1T 2T* 2L† 1L†, 2T
τhad 0M 0M – 1T, 1M 1M 1M 1M
Njets, Nb-jets ≥ 4, = 1, 2 ≥ 2, ≥ 1 ≥ 2, ≥ 1 ≥ 3, ≥ 1 ≥ 4, ≥ 1 ≥ 3, ≥ 1 ≥ 2, ≥ 1

2l : 2 BDTs separating t̄tH from t̄t + V and non-prompt lepton
backgrounds

2D information mapped into 1D ordered by significance

3l : multi-class BDT categorising
events as t̄tH or any of 4 main
backgrounds

Multi-dimensional binning producing
5 regions dominated by the 5
categories2
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1 bin in background categories

2ℓSS 3ℓ SR 3ℓ t t̅ W CR
3ℓ t t̅ Z CR

3ℓ VV CR
3ℓ t t̅ CR

2ℓSS+1τhad

3ℓ+1τhad
4ℓ Z−enr.

4ℓ Z−dep.
1ℓ+2τhad

2ℓOS+1τhad

D
a
ta

 /
 P

re
d
. 

0.5

0.75

1

1.25

1.5

E
v
e

n
ts

 /
 b

in

1−10

1

10

210

3
10

410

5
10

ATLAS
1 = 13 TeV, 36.1 fbs

PostFit

Data Htt
Wtt Ztt

Diboson Nonprompt
 misidq Other

had
τFake Uncertainty

PreFit Bkgd.

P
hys.R

ev.D
97

(2018)072003

2
“foam” clustering algorithm arxiv:0812.0922
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Multi-Classification

Multi-classification with NN to define categories (CMS single-lepton
channel)

Marcel Rieger - 1.3.18
17 SL: DNN method (1)

● Use DNNs to categorize using jets & most probable process

Event Number 
of jets?

DNN

(5 jets)

DNN

(4 jets)

DNN

(≥6 jets)

0.4

0.2

0.1

...      

4

≥ 6

5

ttH

ttbb

ttLF

Categorize 
as ttH

Σ = 1

Categorisation & classification by same ML classifier
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Example: ≥ 6 Jets
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Binary vs. Multi-Classification
CMS example: binary classification (with Njets, Nb-tags categorisation)
vs. multi-classification: better precision with multi-classification

Analysis of simulated data using same uncertainty modelling

Channel Method Best-fit µ

±tot (±stat ± syst)

Single-lepton BDT+MEM 1.0+0.69
−0.66

(
+0.31
−0.30

+0.62
−0.59

)

Single-lepton DNN 1.0+0.58
−0.55

(
+0.30
−0.29

+0.50
−0.47

)

Dilepton BDT+MEM 1.0+1.22
−1.12

(
+0.65
−0.62

+1.04
−0.93

)

Dilepton DNN 1.0+1.38
−1.36

(
+0.71
−0.69

+1.18
−1.18

)

Combined BDT+MEM 1.0+0.60
−0.57

(
+0.28
−0.27

+0.53
−0.51

)

Combined DNN 1.0+0.55
−0.51

(
+0.27
−0.27

+0.47
−0.44

)

Highly non-trivial to compare performance in general
Can probably obtain same sensitivity with almost all techniques if
using sufficient input variables, configuration, and training
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Sensitivity Comparison
Example: S and S/B in most sensitive regions in single-lepton channel

ATLAS (SR≥6j
1 + SR≥6j

2 ): S = 143, S/B = 3.9 %
CMS (≥ 6 jets, ≥ 3 b-tags, t̄tH node): S = 142, S/B = 2.8 %

Same signal efficiency with b-tagging only categorisation
ATLAS smaller inclusive background, CMS smaller t̄t + ≥ 1b background

ATLAS ≥ 6 jets CMS ≥ 6 jets

Full result: stat ⊕ syst uncertainty on µ
ATLAS: 0.29 (35 %) 0.56 (66 %)
CMS: 0.24 (33 %) 0.38 (53 %)

Non-trivial interplay with final classifier
Systematic uncertainties and control regions play most important role
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MC Sample Size

ML classifiers require independent data for training (and validation)
and analysis

Signal and background class(es) enter training with same weight
Increasingly challenging with increasing number of categories/classes

Mitigation e. g. by cross validation
Also, in some cases, train more inclusively than per category (ATLAS)

Example for t̄t in single-lepton channel: POWHEG+PYTHIA8

ATLAS single-lepton decays 60 Mio
t̄t + ≥ 1b filtered (6 % efficiency) 10 Mio

CMS single-lepton decays 120 Mio

“MC stats” 30–50 % of total uncertainty
Negative weights add to challenge

MC sample size critical factor in analysis,
can limit application of ML techniques
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Input-Variable Modelling

Good data-MC agreement required for every single input variable
BDT/NN exploit deep correlations

Careful validation of variables and correlations crucial

Difficult to find independent control sample but single variables not very
sensitive: can look into signal regions

Discussed on Tuesday

ML techniques require well-modelled variables and correlations
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Summary & Conclusions

Machine-learning based MVAs mandatory in many t̄tH channels
Complex final states (“no clear Higgs mass peak”) and low signal purity

Different background processes with different (large) uncertainties:
single binary classification not sufficient
Common general strategy: multi-step classification
1. Categories enriched in signal and different backgrounds
2. Separation of signal and backgrounds (allows constraining uncertainties)

Can be combined (to some extent) using multi-classification ML
techniques

Main challenge (at least in H(bb̄) channel): control of uncertainties
Improve ML techniques for purer control regions (probably incremental)
Explore new ML techniques to reduce dependence on uncertainties
(adversarial training, . . . ): explicitly construct classifiers to be insensitive to
effects with large uncertainties
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Additional Material
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Input Variables ATLAS (1/3)
Variable Definition SR≥4j

1 SR≥4j
2 SR≥4j

3

General kinematic variables

mmin
bb Minimum invariant mass of a b-tagged jet pair X X -

mmax
bb Maximum invariant mass of a b-tagged jet pair - - X

mmin ∆R
bb Invariant mass of the b-tagged jet pair with minimum ∆R X - X

mmax pT

jj Invariant mass of the jet pair with maximum pT X - -

mmax pT

bb Invariant mass of the b-tagged jet pair with maximum pT X - X

∆ηavg
bb Average ∆η for all b-tagged jet pairs X X X

∆ηmax
`,j Maximum ∆η between a jet and a lepton - X X

∆Rmax pT

bb ∆R between the b-tagged jet pair with maximum pT - X X

NHiggs 30
bb

Number of b-tagged jet pairs with invariant mass within
30 GeV of the Higgs-boson mass

X X -

npT>40
jets Number of jets with pT > 40 GeV - X X

Aplanarityb-jet
1.5λ2, where λ2 is the second eigenvalue of the momentum
tensor [100] built with all b-tagged jets

- X -

Hall
T Scalar sum of pT of all jets and leptons - - X

Variables from reconstruction BDT

BDT output Output of the reconstruction BDT X** X** X

mHiggs
bb Higgs candidate mass X - X

∆RH,tt̄ ∆R between Higgs candidate and tt̄ candidate system X* - -

∆Rmin
H,` Minimum ∆R between Higgs candidate and lepton X X X

∆Rmin
H,b Minimum ∆R between Higgs candidate and b-jet from top X X -

∆Rmax
H,b Maximum ∆R between Higgs candidate and b-jet from top - X -

∆RHiggs
bb ∆R between the two jets matched to the Higgs candidate - X -

Variables from b-tagging

wHiggs
b-tag

Sum of b-tagging discriminants of jets from best Higgs can-
didate from the reconstruction BDT

- X -
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Input Variables ATLAS (2/3)
Variable Definition SR≥6j

1,2,3 SR5j
1,2

General kinematic variables

∆Ravg
bb Average ∆R for all b-tagged jet pairs X X

∆Rmax pT

bb ∆R between the two b-tagged jets with the largest vector sum pT X –

∆ηmax
jj Maximum ∆η between any two jets X X

mmin ∆R
bb Mass of the combination of two b-tagged jets with the smallest ∆R X –

mmin ∆R
jj Mass of the combination of any two jets with the smallest ∆R – X

NHiggs 30
bb

Number of b-tagged jet pairs with invariant mass within 30 GeV of
the Higgs-boson mass

X X

Hhad
T Scalar sum of jet pT – X

∆Rmin
`,bb

∆R between the lepton and the combination of the two b-tagged jets
with the smallest ∆R

– X

Aplanarity
1.5λ2, where λ2 is the second eigenvalue of the momentum ten-
sor [100] built with all jets

X X

H1 Second Fox–Wolfram moment computed using all jets and the lepton X X

Variables from reconstruction BDT

BDT output Output of the reconstruction BDT X∗ X∗

mHiggs
bb Higgs candidate mass X X

mH,blep top
Mass of Higgs candidate and b-jet from leptonic top candidate X –

∆RHiggs
bb ∆R between b-jets from the Higgs candidate X X

∆RH,tt̄ ∆R between Higgs candidate and tt̄ candidate system X∗ X∗

∆RH,lep top ∆R between Higgs candidate and leptonic top candidate X –

∆RH,bhad top
∆R between Higgs candidate and b-jet from hadronic top candidate – X∗

Variables from likelihood and matrix element method calculations

LHD Likelihood discriminant X X

MEMD1 Matrix element discriminant (in SR≥6j
1 only) X –

Variables from b-tagging (not in SR≥6j
1 )

wHiggs
b-tag

Sum of b-tagging discriminants of jets from best Higgs candidate from
the reconstruction BDT

X X

B3
jet 3rd largest jet b-tagging discriminant X X

B4
jet 4th largest jet b-tagging discriminant X X

B5
jet 5th largest jet b-tagging discriminant X X
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Input Variables ATLAS (3/3)
Variable Definition

Variables from jet reclustering

∆RH,t ∆R between the Higgs-boson and top-quark candidates

∆Rt,badd ∆R between the top-quark candidate and additional b-jet

∆RH,badd ∆R between the Higgs-boson candidate and additional b-jet

∆RH,` ∆R between the Higgs-boson candidate and lepton

mHiggs candidate Higgs-boson candidate mass
√
d12 Top-quark candidate first splitting scale [101]

Variables from b-tagging

wb-tag Sum of b-tagging discriminants of all b-jets

wadd
b-tag/wb-tag Ratio of sum of b-tagging discriminants of additional b-jets to all b-jets
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Input Variables CMS (1/3)

Variable Definition SL
(4

je
ts

,≥
3

b
ta

gs
)

SL
(5

je
ts

,≥
3

b
ta

gs
)

SL
(≥

6
je

ts
,≥

3
b

ta
gs
)

D
L
(≥

4
je

ts
,3

b
ta

gs
)

D
L
(≥

4
je

ts
,≥

4
b

ta
gs
)

pT(jet 1) pT of the highest-pT jet + + - - -

η(jet 1) η of the highest-pT jet - + + - -

d(jet 1) b tagging discriminant of the highest-pT jet + + + - -

pT(jet 2) pT of the second highest-pT jet - + - - -

η(jet 2) η of the second highest-pT jet + + + - -

d(jet 2) b tagging discriminant of the second highest-pT jet + + + - -

pT(jet 3) pT of the third highest-pT jet - + - - -

η(jet 3) η of the third highest-pT jet + + + - -

d(jet 3) b tagging discriminant of the third highest-pT jet + + + - -

pT(jet 4) pT of the fourth highest-pT jet + + - - -

η(jet 4) η of the fourth highest-pT jet + + + - -

d(jet 4) b tagging discriminant of the fourth highest-pT jet + - + - -

pT(lep 1) pT of the highest-pT lepton - + + - -

η(lep 1) η of the highest-pT lepton + - + - -

davg
j average b tagging discriminant value of all jets + + + - -

davg
b average b tagging discriminant value of b-tagged jets + + + + +

davg
non-b average b tagging discriminant value of non-b-tagged jets - - - + +

∑b
(
d − davg

b

)
squared difference between the b tagging discriminant
value of a b-tagged jet and the average b tagging discrimi-
nant values of all b-tagged jets, summed over all b-tagged
jets

+ + + - -

dmax
j maximal b tagging discriminant value of all jets + + + - -

dmax
b maximal b tagging discriminant value of b-tagged jets + + + - -

dmin
j minimal b tagging discriminant value of all jets + + + - -

dmin
j minimal b tagging discriminant value of b-tagged jets + + + - -

d2 second highest b tagging discriminant value of all jets + + + - -
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Input Variables CMS (2/3)

Variable Definition SL
(4

je
ts

,≥
3

b
ta

gs
)

SL
(5

je
ts

,≥
3

b
ta

gs
)

SL
(≥

6
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,≥

3
b

ta
gs
)

D
L
(≥

4
je

ts
,3
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gs
)

D
L
(≥

4
je

ts
,≥

4
b

ta
gs
)

Nb(tight) number of b-tagged jets at a working point with a 0.1%
probability of tagging gluon and light-flavour jets

+ + + - -

BLR likelihood ratio discriminating between 4 b quark jets and
2 b quark jets events

+ + + - -

BLRtrans transformed BLR defined as ln[BLR/(1.0 − BLR)] + + + - -

∆Rmin
j,j ∆R between the two closest jets + + + - -

∆Rmin
b,b ∆R between the two closest b-tagged jets + + + - -

∆Rmax
j,j ∆R between the two jets furthest apart - + - - -

∆Rmax
b,b ∆R between the two b-tagged jets furthest apart - - + - -

∆ηmax
j,j ∆η between the two jets furthest apart in η - - - - +

∆ηmax
b,b ∆η between the two b-tagged jets furthest apart in η - - - + +

∆η
avg
b,b average ∆η between b-tagged jets - - + - -

∆Ravg
b,b average ∆R between b-tagged jets - + + - -

∆Ravg
j,b average ∆R between jets of which at least one is b-tagged - - - + -

∆Rmin∆R
lep,j ∆R between lepton and closest jet + + - - -

∆Rmin∆R
lep,b ∆R between lepton and closest b-tagged jet - + + - -

mmin∆R
lep,b mass of lepton and closest b-tagged jet + + + - -

mmin∆R
b,b mass of closest b-tagged jets + + + - +

mmin∆R
j,b mass of closest jets of which at least one is b-tagged - - - + -

mmax mass
b,b maximal mass of pairs of b-tagged jets - - - + +

pT
min∆R
b,b combined pT of closest b-tagged jets - - - + -

pT
min∆R
j,b combined pT of closest jets of which at least one is b-tagged - - - - +

mavg
j average mass of all jets + + + - -

(m2)
avg
b average squared mass of all b-tagged jets + - + - -

mclosest to 125
b,b mass of pair of b-tagged jets closest to 125 GeV - + + - -

Nj,j number of pairs of b-tagged jets with an invariant mass
within 15 GeV of 125 GeV

- - - + +

MEM matrix element method discriminant + + + - -
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Input Variables CMS (3/3)

Variable Definition SL
(4

je
ts

,≥
3

b
ta

gs
)

SL
(5

je
ts

,≥
3

b
ta

gs
)

SL
(≥

6
je

ts
,≥

3
b
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gs
)

D
L
(≥

4
je

ts
,3

b
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gs
)

D
L
(≥

4
je

ts
,≥

4
b

ta
gs
)

Hj
T scalar sum of jet pT - + - + -

Hb
T scalar sum of b-tagged jet pT + + + - -

Aj 3
2 λ3 where λi are the eigenvalues of the momentum tensor
built with jets [? ]

- + + - -

Ab 3
2 λ3 where λi are the eigenvalues of the momentum tensor
built with b-tagged jets [? ]

+ + + - -

Cj Hj
T divided by the sum of the energies of all jets - - + - -

Cb Hb
T divided by the sum of the energies of all b-tagged jets - - + - +

Sj 3
2 (λ2 + λ3) where λi are the eigenvalues of the momentum
tensor built with jets [? ]

+ + + - -

Sb 3
2 (λ2 + λ3) where λi are the eigenvalues of the momentum
tensor built with b-tagged jets [? ]

- + + - -

Sj
T

2λ2
λ2+λ1

where λi are the eigenvalues of the momentum tensor
built with jets [? ]

+ + + - -

Sb
T

2λ2
λ2+λ1

where λi are the eigenvalues of the momentum tensor
built with b-tagged jets [? ]

+ + + - -

Ib a measure of how spherical or linear in r−φ space b-tagged
jets are in the event

- - - + -

H2 second Fox–Wolfram moment [? ] - + - - -

H3 third Fox–Wolfram moment [? ] + + - - -

Hb
3 third Fox–Wolfram moment calculated with b-tagged jets

[? ]
- - - - +

R3 ratio of Fox–Wolfram moments H3/H0 [? ] - - - + -

H4 fourth Fox–Wolfram moment [? ] + - + - -
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