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ttH Status A\ ¢
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2017-03
http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-17-035/

ttH Challenges AT

® Small ttH production cross-
section of =~ 0.5pb at 13 TeV

m Combination of tt and H decays: .
multitude of possible final states tH
with many objects

a Jets and b jets
a Light leptons and hadronic s
a Photons
a Complimentary challenges
a H — vv,ZZ: high purity, tiny rate
a H — multileptons: intermediate, small rate, difficult experimental and
tt + V backgrounds
® H — bb: high rates, difficult tt + jets background

Need dedicated machine-learning techniques at various levels
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Outline SIT

a Outline

m Machine learning at the LHC and in ttH
m Strategy: categorisation, reconstruction, classification
a Binary and multi-classification

a Outline and comparison of strategies, no listing of every analysis detail
a Highlighting items for discussion
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Machine Learning (ML) at the LHC AT

a Improved sensitivity by multivariate analysis (MVA)
m Combination of various input variables into single output

a Combination with supervised-learning =
machine-learning (ML) techniques w
a Boosted Decision Tree (BDT) Hustraton only
m Established ML technique
m Robust workhorse for binary classification
a Deep Neural Network (NN)

a Rather new ML technique at the LHC
a Artificial neural network with several hidden
layers for multi-classification

a Also: likelihood (LH) technique

a Not an ML technique but important MVA

a Physics-motivated likelihood ratio discriminant

a Matrix-Element-Method (MEM) and
reco-based LH

Il Background
B Signal

# Events

1 2 3 4
l MVA bin

Fit
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Machine Learning (ML) in ttH AUT

a ML techniques exploited at various levels
m Foremost: final classification w
Illustration only

m Classify event as signal or background
a Typically: final fit of ML classifier output
distributions
m Sensitivity depends on ability to constrain
background uncertainties
a Common strategy: multi-step classification
m Categories enriched in signal and different

background processes (=uncertainty) ) ) 3 "
m Advanced signal vs background separation l MVA bin

Il Background
M Signal

# Events

Fit
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Machine Learning (ML) in ttH AT

a ML techniques exploited at various levels
a Foremost: final classification W
lllustration only

m Classify event as signal or background
a Typically: final fit of ML classifier output
distributions
a Sensitivity depends on ability to constrain
background uncertainties
a Common strategy: multi-step classification

m Categories enriched in signal and different
background processes (=uncertainty)
m Advanced signal vs background separation

W ttH | ttbb 2
Lo ttec [ ttif

# Events

3 4
MVA bin
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Machine Learning (ML) in ttH AT

a ML techniques exploited at various levels
a Foremost: final classification w
lllustration only

m Classify event as signal or background

a Typically: final fit of ML classifier output
distributions

a Other important applications

m Trigger level

a Object identification

a Event reconstruction

a Event categorisation

W ttH | ttbb 2
L ttece [ ttf

Y

# Events

3 4
MVA bin
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ttH(bb) Production A[{]]

= Main example here for ML techniques: search for ftH(bb) production
(ATLAS: Phys. Rev. D 97 (2018) 072016, CMS: CMS-HIG-17-026 subm. to JHEP)

m Applies similarly to other ttH analyses

9 000000000000 ————— ¢
a Challenging final state

- . . H b
a Huge combinatoricsinevent ~ --=- <7
reconstruction b
® Large background: tt +jets 9 708000800000 ¢

® In particular: irreducible tt + bb g b ¢

background (5-10 x signal) with 5

associated large theory uncertainties
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Categorisation

AT

Karlsruher Insttut far Technologie

w Goal: separate signal from tt + LF, tt + > 1b, and tt4+ > 1c bkgs.
m Common strategy (ATLAS, CMS dilepton channel): categorisation by

jet and b-tagging information
a Example from ATLAS

not tagged  loose

medium  tight  very tight

77% 70% 60 %
3 4 5

CR7 tlight

b jet ID efficiency — 85%
discriminant index 1 2
(1%, 2") jet  Single Lepton, > 6 j
b-tagging
discriminant
(3.3)
(4.3)
(5.3)
(4.4
CRi4p — CRiz>1c
5.4 \
i
(5.5) | SRy SR, ‘ SR; ‘ \’\

(5,5) (5.4) (5.3) (5,2) (4.4) (4,3) (4.2) (3.3) (3.2) (22) (5. 1) (4 1) (3. 1) (2. 1) (L, 1) (34, 4th) jet
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Categorisation

ATLAS Ot +light (it + >1c [+ 210
f5=13Tev @i+v  [ONon-i
Dilepton
5 3
CR, CRayp

¢

29 24
CR nr.‘fn CRily

SR3Y sRr3" SR

¢ €

¢ o

ATLAS
f5=13Tev
Single Lepton

RS

i

5
SRY
=5
CR nlj
SRy
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Dt +igh [+ s10 Wi+ >0
Di+v  Onond

5 5
CRY, CRi,p

o
> @
- SRboosted
CRiLy, CRithy

SR SR

¢ €

Signal purity < 6 %: need further separation of signal from background
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Event Reconstruction \“(lT

Karlsruher Instit

<o § gti‘irev.a"eun“ Elgaﬁg"‘ E::”l‘
g Singe Lepton B o et unc
A
<D
m Reconstruct top and Higgs candidates o L
from final-state objects CeTE T
m Additional separating variables for final = _2-7’”‘ el

Events

classification e
jots [V

28 X ttH momen
a Different techniques to find best combination ”

m ATLAS: BDT
m Up to 50 % Higgs reconstruction efficiency

(if using my)
C a2 g Wi
m CMS: x“ based 3 %ﬁ/é

a ~ 30 % Higgs reconstruction efficiency o

best higgs mass
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Final Event Classification AT

Karlsruher Institut for Technologie

ATLAé ' " ebam I“H
- 1 Ot +light Ot +>1c
{s=13TeV, 36.1fb i+ 51b EI“ My

a But Higgs mass: sensitivity not sufficient

Events / 25 GeV

400) :g\gf Lepton [ONon-tt 7 Total unc,
m Jet energy resolution BT me,
a Combinatorics in jet assignment 1 ‘
m Several discriminating variables separating =,
signal from background a5

a b-tagging information

m Jet and lepton kinematics g o e Sa

m Angular and event-shape variables B 2“‘;CSQQSZEZCDB§“T°)[GEQ°
a Invariant masses

a MEM B

ML-based MVA classifiers combining
information from several variables

a Possible further improvements?
a c-tagging information
a Jet charge

data/MC

best higgs mass
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Choice of Configuration and Input Variables T

Karlsruher Insttut fur Technologie

a BDT/NN performance depends on configuration and input variables

a Finding optimal choice high-dimensional problem:

solution “by-hand” or with algorithm

m Example: solution based on Particle Swarm Optimisation’
1. Swarm of candidate BDTs, each initialised at random configuration
2. Random choice of input variables: train and test performance

3. BDTs move to new positions in configuration space, depending on their

own and the swarms best previous positions
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1Kennedy and Eberhart, doi:10.1109/ICNN.1995.488968
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http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-16-004/index.html

Binary Classification T

a Example: BDT per category to separate signal from background
(ATLAS, CMS dilepton channel)
m Combination of kinematic variables and output of event reconstruction
m b-tagging information
a CMS: continuous b-tagging output improves classification
m ATLAS: little gain because already used (almost) differentially in categorisation

a Different ML techniques with similar results (after sufficient training)

mti+21b @E+V
ONon-ft 7 Total unc.
~tiH (norm)

£ AN KOS I I P e B
E fs=13TeV,36.1fb ey H {s=13TeV,36.1fb Wti+21b [@E+V € 250 fs=13TeV,36.1 b Hi+>b Ei+v

400f Single Lepton f
'ge Lep! ONon-tt 7 Total unc.

Single Lepton ONoni 7 Total unc.
~1tH (norm) oo

200} Dilepton
SRE ~ttH (norm)

Pre-Fit Pre-Fit

Data / Pred.
Data / Pred.
Data / Pred,

085 I5E 08 04 02 0 02 04 08 08 1 O8I~ GE 06 04 02 0 02 04 05 08 1

Classification BDT output Classification BDT output Classification BDT output

203 02 01 0 01 02 03
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Binary Classification T

m Example: BDT per category to separate signal from background
(ATLAS, CMS dilepton channel)
m Combination of kinematic variables and output of event reconstruction
m b-tagging information
a CMS: continuous b-tagging output improves classification
m ATLAS: little gain because already used (almost) differentially in categorisation

a Different ML techniques with similar results (after sufficient training)

c e T € B BIARA A e ey A e c T T T T T —
a ATLAS # Data mtH = ATLAS ¢ Data mtH s ATLAS # Data mtH
] - 1 [Ott+light [t +21c 2 - 1 [Oti+light O+ 21lc 2 - 1 [Ott+light [t +21c
2 g‘, 13TeV, 36.1 b Wi+21b @H+V 2 o fflla TeV, 36.1 fb Wi+olb @i+v £ 20 57‘13 TeV, 36.1 fb Bi+alb @V
& 200 Diepton ONonff ~ ZTotalunc.{ 2 ingle Lepton ONoni ~ 7Totalune.] 3 ingle Lepton CINon-ti 7 Total unc.
SRy ~-{tH (norm) 350} SRT ~-{iH (norm) SRoooste ~~{tH (norm)
[ Post-Fit 200r post-Fit

125

075

085 I5E 08 04 02 002 04 08 08 1 O8I~ GE 06 04 02 0 02 04 05 08 1

Classification BDT output Classification BDT output Classification BDT output

Data / Pred.
Data / Pred.
Data / Pred,

203 02 01 0 01 02 03
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Binary Classification

a Example: MEM to separate signal from background
(CMS dilepton channel)
a Pre-classification by BDT
® MEM in signal-enriched regions targeting ttH vs. tt + bb
a Alternatively, MEM as input variable
(ATLAS and CMS, single-lepton channel)

KIT

institut fr Technologie:

35.9 b (13 Tev)

S P oleapeine® & om et ]
= MEM by construction very powerful A R RV PO
against tt + bb -

w Yields up to 10 % improvement in wof O Runcerany 3
sensitivity w0 .

m Relies on LO calculations and per-jet
transfer functions associating
reconstructed objects and final-state

Data / Pred.

partons

a CPU intensive
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Binary Classification

a Example: MEM to separate signal from background
(CMS dilepton channel)
a Pre-classification by BDT
® MEM in signal-enriched regions targeting ttH vs. tt + bb

a Alternatively, MEM as input variable
(ATLAS and CMS, single-lepton channel)

a MEM by construction very powerful

against tt + bb

m Yields up to 10 % improvement in

sensitivity

m Relies on LO calculations and per-jet
transfer functions associating
reconstructed objects and final-state

partons

a CPU intensive

Matthias Schroder —

Machine learning at ATLAS and CMS
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Binary Classification

Karlsruher Institut for Technologie

m Example: Reco-based LH to separate signal from background
(ATLAS)
a Less CPU intensive
a Avoid assumptions of LO and per-jet transfer functions
m Same performance achieved as with MEM
MEM reco-based LH

T T T T T T T

e ST Bie | 3 e S B
£ 400f Vs =13 TeV, 36.1 fo" 1+ L+ 210 2 400} Vs =13 TeV, 36.1 o' t +lig 1+ 21c
g Single Lepton mit+21b @i+ V e Single Lepton mit+>1b @i+ Vv
& 'ge Lep [Non-ff 7~ Total unc. & 'gle Lep ONon-ff 77 Total unc.
SR7” -~ ttH (norm) SRY” -~ ttH (norm)
300} Post-Fit --- Pre-Fit Bkgd. --- Pre-Fit Bkgd.

5 g T
o o 125

& Wecssseepns B I e & . _O_HA#M;// s

o S e < g i
g o g o
o 05 [=] 05

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

1/(1 + exp(-MEM,_ -4)) LHD
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From Binary to Multi-Classification

T

- Institut for Technologie

w Example ttH(ML) in ATLAS: different strategies depending on channel

208S 3¢ 40 W42Thaa  20SS+17haa  200SH+1Thag  30+1Thag
Light lepton 2T* 1L*, 2T* 2L, 2T 1T 2T* 2Lf 1LT, 2T
Thad oM oM - 1T, 1M 1M 1M 1M
Npw Nojrs | 24, =12 >2.>1 >2.>1 >3.>1  >4>1  >3>1  >2>1

m 2/:2 BDTs separating ttH from tt + V and non-prompt lepton

backgrounds

a 2D information mapped into 1D ordered by significance

a 3/: multi-class BDT categorising
events as ttH or any of 4 main
backgrounds

a Multi-dimensional binning producing
5 regions dominated by the 5
categories?

m Fit signal BDT in ttH category

a 1 bin in background categories

2“foam” clustering algorithm arxiv:0812.0922
Matthias Schroder — Machine learning at ATLAS and CMS
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Events / bin
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2017-02/
https://arxiv.org/abs/0812.0922

Multi-Classification N{]]

institut fr Technologie:

m Multi-classification with NN to define categories (CMS single-lepton
channel)

Event as ttH

N, |
DNN ttbb @ i Categorize

DNN

Categorisation & classification by same ML classifier
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Example: > 6 Jets

AT

Karlsruher Insttut for Technologie

35.9fb (13 TeV) CM: 3591 a3te CMS 35.9 1 (13 TeV)
c LN B B o b B~ Tl L L = Y~ (O ) By L
@ SL(=6jets, 23 btags) e Data 15 x fiHy, a SL(=6jets, 23 btags) e Data @ SL(26jets,23btags) e Data 15 x fiHy,
P iH node Wi 2 ti+bb node [ P i+2b node [ . [ ]
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o ivbb [l Single t o b o i+ob [l Singlet
Mvsets  Ciisv = [ v+ets Wvers [t 1
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DNN discriminant DNN discriminant DNN discriminant
MS 359 b (13 TeV) CMS 359 b (nrev) 35.9 fb (13 TeV)
< R B o L e I T e £ 10t T T T
o SL (26 jets, 23btags) e Data a SL (26 jets, 23 btags) e Data o SL (26 jets, 23btags) e Data 15 x fiH,
@ i+h node P tivce node @ @+1f node i
E Pre-fit expectation g Pre-fit expectation E Pre-fit expectation
o Wsinge t o W single t o Wsingle t
Oiv v v
WlDiboson  [N] Uncertainty K uncertainty K] Uncertainty
¢
k-1 =1 =]
14 o +\ L 1s5F =
€ g bk €M -
= RN AN \* = RANRNT < N N AN
T O05F =4 & O05F T O5F =
a \‘\\\\‘\\\\‘\\\\‘ NEE pya) sl bevn by e by Ly 1003 Q \‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘
0.25 03 0.35 0.4 0.45 022 024 026 028 0.3 032 034 0.22 0.24 0.26 0.28 03 0.32 0.3:

DNN discriminant DNN discriminant

Matthias Schroder — Machine learning at ATLAS and CMS

DNN discriminant

May 31, 2018 18/23



Binary vs. Multi-Classification AT

m CMS example: binary classification (with Niets, No-tags Categorisation)
vs. multi-classification: better precision with multi-classification
m Analysis of simulated data using same uncertainty modelling

Channel Method Best-fit p
+tot (stat + syst)

Single-lepton  BDT+MEM  1.0*0% (03} *0%2)
Singledlepton  DNN 10703 (03 “0%)
Dilepton BDT+MEM 107132 (+0 “144)
Dilepton DNN 10413 (407 4118)
Combined  BDT+MEM 10708 (%42 %)
Combined DNN 107903 (8% 34)

a Highly non-trivial to compare performance in general
a Can probably obtain same sensitivity with almost all techniques if
using sufficient input variables, configuration, and training
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Sensitivity Comparison

m Example: S and S/B in most sensitive regions in single-lepton channel

ATLAS

(SR7Y + SRZ):

CMS (> 6 jets, > 3 b-tags, {tH node):
m Same signal efficiency with b-tagging only categorisation
m ATLAS smaller inclusive background, CMS smaller tt + > 1b background

S = 143,
S =142,

SB=3.9%
S/B=2.8%

ATLAS > 6 jets CMS > 6 jets

bR\(‘J 7~ SRZ6 SR‘ZF” grcifi( post-fit viclfis E—
Sample Prefit Post-fit Pre-fit Post-fit Pre-fit Post-fit P,“’l?“s ttH node fi+bbnode
TH 5 T 10 71 £ 52 81 £ 10 68 T 50 62 T 11 51 & as | }?ffg (3?1) 1522 123?
£+ light | 750 &+ 370 586 & 98 210 + 210 96 + 33 14 £ 10 121 £ 58 ‘f*;“ 50 (1415) (1230)
ti4 >lc | 880 + 350 1330 + 190 | 350 + 100 473 + 99 53 + 33 41 £ 20 | 549 (705 | 575 (746)
4+ >1b | 2100 £ 420 2200 + 170 | 1750 + 370 1850 + 130 | 1010 + 240 1032 + 59 | 20 306 (233) 282 (215)
tt+V 512 £ 7.4 508 £ 59 | 40.8 £ 57 403 + 48 | 258 £ 3.7 253 + 32 | fbb 834 (769) | 1156 (1082)
Non-tf 303 +£ 82 267 £ 63 | 155 £ 52 134 + 46 75 L 20 58 + 17 | Singlet 110 (116) | 146 (145
Total 1740 + 850 4500 £ 110 | 2550 & 510 2657 + 82 | 1220 + 250 1223 £ 42 V+jets 8 G2 78 (76)
Data 1698 2641 1222 v 80 (75) 58 (54)
Diboson 09 (09) 05 (0.5)
Total bkg. | 5049 (4733) | 4575 (4447)
. H + totunc. | 1216 (£186) |+1156 (+142)
a Full result: stat & syst uncertainty on u e e
ATLAS 0 29 (35 O/o) O 56 (66 °/o) =+ tot unc. +19 (£15) +8  (+6)

CMS:  0.24(33%) 0.38 (53%)

Matthias Schroder —

Non-trivial interplay with final classifier
Systematic uncertainties and control regions play most important role
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MC Sample Size A\KIT

a ML classifiers require independent data for training (and validation)
and analysis

a Signal and background class(es) enter training with same weight
a Increasingly challenging with increasing number of categories/classes

a Mitigation e. g. by cross validation
a Also, in some cases, train more inclusively than per category (ATLAS)

m Example for tt in single-lepton channel: POWHEG+PYTHIA8

ATLAS  single-lepton decays 60 Mio
tt + > 1b filtered (6 % efficiency) 10 Mio

CMS single-lepton decays 120 Mio

m “MC stats” 30-50 % of total uncertainty
a Negative weights add to challenge

MC sample size critical factor in analysis,
can limit application of ML techniques

Matthias Schroder — Machine learning at ATLAS and CMS May 31, 2018 21/23



Input-Variable Modelling &‘(lT

m Good data-MC agreement required for every single input variable
a BDT/NN exploit deep correlations

a Careful validation of variables and correlations crucial

m Difficult to find independent control sample but single variables not very
sensitive: can look into signal regions
® Discussed on Tuesday

ML techniques require well-modelled variables and correlations
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Summary & Conclusions A\KlT

w Machine-learning based MVAs mandatory in many ttH channels
a Complex final states (“no clear Higgs mass peak”) and low signal purity

a Different background processes with different (large) uncertainties:
single binary classification not sufficient
a Common general strategy: multi-step classification
1. Categories enriched in signal and different backgrounds
2. Separation of signal and backgrounds (allows constraining uncertainties)
m Can be combined (to some extent) using multi-classification ML
techniques
= Main challenge (at least in H(bb) channel): control of uncertainties
a Improve ML techniques for purer control regions (probably incremental)
a Explore new ML techniques to reduce dependence on uncertainties
(adversarial training, .. .): explicitly construct classifiers to be insensitive to
effects with large uncertainties
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Additional Material
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Input Variables ATLAS (1/3)

AT

Karlsruher Institut for Technologie

Variable ‘ Definition SRy
General kinematic variables
mppn Minimum invariant mass of a b-tagged jet pair v v -
mp Maximum invariant mass of a b-tagged jet pair - - v
mpin AR Invariant mass of the b-tagged jet pair with minimum AR v v
iy Invariant mass of the jet pair with maximum pr v - -
mp Invariant mass of the b-tagged jet pair with maximum pr | v - v
Ay Average A for all b-tagged jet pairs v v v
A Maximum An between a jet and a lepton - v v
ARG PT AR between the d-tagged jet pair with maximum pr - v v

Higgs 30 Number of b-tagged jet pairs with invariant mass within | v R

b 30 GeV of the Higgs-boson mass
ot Number of jets with pr > 40 GeV - v v
Aplanarity, o L5, where Xz s the second eigenvalue of the momentum v .

tensor [100] built with all b-tagged jets
! Scalar sum of pr of all jets and leptons - - v
Variables from reconstruction BDT
BDT output Output of the reconstruction BDT Ve v v
e Higgs candidate mass v - v
ARp g AR between Higgs candidate and t# candidate system v’ -
AR Minimum AR between Higgs candidate and lepton v v v
ARYY Minimum AR between Higgs candidate and b-jet from top | v/ v -
ARy Maximum AR between Higgs candidate and b-jet from top | - v -
AR,‘j,'“‘ AR between the two jets matched to the Higgs candidate - v -
Variables from b-tagging
Sum of b-tagging discriminants of jets from best Higgs can- | _ P N

didate from the reconstruction BDT

Matthias Schroder — Machine learning at ATLAS and CMS
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Input Variables ATLAS (2/3)

AT

Variable | Definition SRZY, SRY,

General kinematic variables

ARYE Average AR for all b-tagged jet pairs v v

ARy™ T AR between the two b-tagged jets with the largest vector sum pr v

Ay Maximum A between any two jets v v

min AR Mass of the combination of two b-tagged jets with the smallest AR v

mppin AR Mass of the combination of any two jets with the smallest AR v

Nl 30 Nunber of b-tagged jet pairs with invariant mass within 30 GeV of | v
the Higgs-boson mass

Hyed Scalar sum of jet pr v

ARmin AR between the lepton and the combination of the two b-tagged jets v

Lo with the smallest AR

Aplanaity fo?{inn\]\}»‘;u‘fn T\Zm‘: Hjil;:wn(l cigenvalue of the momentum ten- v

Hy Second Fox-Wolfram moment computed using all jets and the lepton | v/ v

Varfables from reconstruction BDT

BDT output | Output of the reconstruction BDT v v

iy e Higgs candidate mass v v

M by o Mass of Higgs candidate and b-jet from leptonic top candidate v

AR AR between b-jets from the Higgs candidate v v

AR AR between Higgs candidate and ¢f candidate system v v

ARpep top | AR between Higgs candidate and leptonic top candidate v

ARpp, AR between Higgs candidate and b-jet from hadronic top candidate v

Variables from likelihood and matrix element method calculations

LHD Likelihood discriminant v v

MEMp, Matrix element discriminant (in SRT% only) v

Variables from b-tagging (not in SR ")

e St of -tagging discrimmants of Jets from best Miges candidate from [/ P
the reconstruction BDT

B}, 37 largest jet b-tagging discriminant v v

B, 4 Jargest jet b-tagging discri v v

B}, 5t largest jet b-tagging discri v v
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Input Variables ATLAS (3/3) A\ ¢

Karlsruher Institut for Technologie

Variable [ Definition

Variables from jet reclustering

ARy, AR between the Higgs-boson and top-quark candidates
AR, yaaa AR between the top-quark candidate and additional b-jet
ARjy pota AR between the Higgs-boson candidate and additional b-jet
ARp AR between the Higgs-boson candidate and lepton

MHiggs candidate | Higgs-boson candidate mass

Tz Top-quark candidate first splitting scale [101]

Variables from b-tagging

W pog Sum of b-tagging discriminants of all b-jets

W /W0 Ratio of sum of b-tagging discriminants of additional b-jets to all b-jets
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Input Variables CMS (1/3) AT
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28 N m A
NN g §E
g 855 =
S )
a 2 2 2
Variable Definition & ®» ®» A0
prijet1)  prof the highest-pr jet - - -
fjet1) 1 of the highest-pr jet - - -
d(jet1) b tagging discriminant of the highest-pr jet o -
prljet2)  prof the second highest-pr jet -
y(jet2) 1 of the second highest-pr jet ok - -
d(jet 2) b tagging discriminant of the second highest-pr jet o+ - -
prljet3)  prof the third highest-pr jet S - - -
y(jet3) 1 of the third highest-p jet ok - -
d(jet3) b tagging discriminant of the third highest-pr jet ok e - -
prijet4)  prof the fourth highest-pr jet o
(et d) 1 of the fourth highest-pr jet o+ - -
d(jet4) b tagging discriminant of the fourth highest-pr jet e -
prllep1)  pr of the highest-pr lepton R
n(lep1) 1 of the highest-pr lepton R
& average b tagging discriminant value of all jets o4+
't average b tagging discriminant value of b-tagged jets R
dnk average b tagging discriminant value of non-b-tagged jets - - -+ +
Y (d-dj'®) squared difference between the b tagging discriminant -+ -
value of a b-tagged jet and the average b tagging discrimi-
nant values of all b-tagged jets, summed over all b-tagged
jets
drox maximal b tagging discriminant value of all jets ok e - -
dmax maximal b tagging discriminant value of b-tagged jets + o+ e - -
dmin minimal b tagging discriminant value of all jets R
dmin minimal b tagging discriminant value of b-tagged jets o - -
second highest b tagging discriminant value of all jets b+
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Input Variables CMS (2/3)

2 83 B
R
2208
£ £ e
sean
Variable  Definition @ 7 8
Ni(tight)  number of b-tagged jets at a working point with a 0.1% + + + - -
probability of tagging gluon and light-flavour jets
BLR likelihood ratio discriminating between 4 b quark jetsand  +  + + -
2b quark jets events
BLR™*  transformed BLR defined as In[BLR/(1.0 — BLR)] o+ - -
ART™ AR between the two closest jets o - -
ARPI AR between the two closest b-tagged jets oo - -
ART™ AR between the two jets furthest apart e
ARPEX AR between the two b-tagged jets furthest apart R
A Ay between the two jets furthest apart in 1 S -
AR Ay between the two b-tagged jets furthest apart in - -
A average Ay between b-tagged jets - -+ - -
AR(®  average AR between b-tagged jets B
ARYE average AR between jets of which at least one is b-tagged - - -
AR AR between lepton and closest jet EE T
ARTASR AR between lepton and closest b-tagged jet S+ e - -
mipit® mass of lepton and closest b-tagged jet o+ - -
MR mass of closest b-tagged jets o -
mindK mass of closest jets of which at least one is b-tagged - - - e -
mEP™ maximal mass of pairs of b-tagged jets - -+
priindR - combined pr of closest b-tagged jets - -+
prian®  combined pr of closest jets of which at least one isb-tagged - - - -+
m"™  average mass of all jets o4 - -
(m2)" average squared mass of all b-tagged fets - - -
mEsestio 123 mass of pair of b-tagged jets closest to 125 GeV R
Nii number of pairs of b-tagged jets with an invariant mass - S
within 15GeV of 125GeV’
MEM matrix element method discriminant + o+ o+ - -
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Input Variables CMS (3/3)
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352 a2 =2
Variable Definition ® ® ®» B B
Hy  scalar sum of jet pr + +
HY  scalar sum of b-tagged jet pr o+ - -
Al 33 where A; are the eigenvalues of the momentum tensor -+ + - -
built with jets [? ]
A®  3); where A; are the eigenvalues of the momentum tensor  +  + + - -
built with b-tagged jets [? ]
a Hj, divided by the sum of the energies of all jets B
cb HY divided by the sum of the energies of all b-tagged jets - -+ -+
sl 3(A2+ A3) where A; are the eigenvalues of the momentum  +  + + - -
tensor built with jets [? ]
st 3(A2+ A3) where A; are the eigenvalues of the momentum -+ + - -
tensor built with b-tagged jets [? ]
s i where A, are the eigenvalues of the momentum tensor — + +  + - -
built with jets [2]
sk 2 where ), are the eigenvalues of the momentum tensor — +  +  + - -
It with b-tagged jets [2 ]
g ameasure of how spherical or linear inr — ¢ spaceb-tagged - - -+ -
jets are in the event
Hy  second Fox-Wolfram moment [? ] - -
H;  third Fox-Wolfram moment [? | o - -
H}  third Fox-Wolfram moment calculated with b-tagged jets - - - -+
1
Ry ratio of Fox-Wolfram moments Hs/Hy [? ] e
H;  fourth Fox-Wolfram moment [? | - - -
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