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Building Likelihoods
● Most analyses (especially ttH/tH, with more data available...) are "shape analyses"

○ based on distributions of continuous observables
○ signal and background predictions depend on parameters:

■ parameter of interest, POI (e.g. signal strength µ)
■ eventually other ("nuisance") parameters, NPs 

(e.g. background normalization...)

● Build a global likelihood function:

○ binned likelihood:

○ unbinned likelihood:

● Result = POI value that maximizes the likelihood 2

observed 
bin contents parameters

S+B prediction in bin i

PDFs for for S and Bvalues of observable m

Poisson
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The Profile Likelihood approach
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● The profile likelihood is a way to include systematic uncertainties in the likelihood
○ systematics included as "constrained" nuisance parameters
○ the idea behind is that systematic uncertainties on the measurement of µ come from 

imperfect knowledge of parameters of the model (S and B prediction)
■ still some knowledge is implied: "θ = θ0 ± Δθ"

○ external / a priori knowledge interpreted as "auxiliary/subsidiary measurement", 
implemented as constraint/penalty term, i.e. probability density function
(usually Gaussian, interpreting "±Δθ" as Gaussian standard deviation)

- usually θ0=0 and Δθ=1 (convention)
- define effect of systematic j on prediction x in bin i at "+1" and "-1",
- then interpolate & extrapolate for any value of θ 



Normalization factors and MC statistics
● Beside NP associated to systematic uncertainties, 

other NP can be included in the likelihood as free parameters, in the same way as the POI:
○ called "normalization factors" (NF)
○ no prior, multiplicative factors (⇒ linear) for particular S, B or B components:

B(θ, k) = k⋅ B(θ)

● Statistical uncertainty from limited number of (MC) events used to build the histograms for 
predicted S and B result in independent uncertainties in each bin, referred to as "MC stat."

○ implemented as additional NPs (one per bin) with scaled Poisson ("gamma") priors
○ default: single MC-stat NP assigned to total prediction (S+B) in each bin:

■ problematic for signal, or in general component of the prediction with the POI 
attached to it (e.g. if these NP get pulled)
⇒ NOT applied to signal

■ could consider to split it: useful?
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Categories, SRs, CRs...
● Multiple analysis regions / event categories often used:

○ decay modes
○ kinematic selections

● Useful to model these separately if
○ sensitivity is better in some regions (avoids dilution)
○ some regions can constrain NPs (including NP for systematics)

■ e.g. control regions for backgrounds
● Analyse them simultaneously to model correlations 

between the regions (common NPs)
○ better than a-posteriori combination

 

● If no statistical correlations (orthogonal)
⇒ can simply take likelihood product
 

● Usually coherent/correlated effect of 
all parameters (including NP for systematics)
in all bins, in all regions
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Profile Likelihood maximization
● With such a likelihood defined, the measurement of the parameter of interest (POI, or µ) 

becomes a N-dimensional likelihood maximisation 
(or negative-log-likelihood minimization) problem:

N = N(POI) + N(NP)

○ ⇒ N-dimensional fit
■ fit result is "best point" (µ, θ)
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Profile Likelihood Ratio
● Neyman-Pearson lemma:

○ the likelihood ratio L(H0)/L(H1) is the optimal discriminator when testing hypothesis 
H1 vs. H0 - e.g. H1 = presence of signal (µ>0), H0 no signal (µ=0)

● In case of profile likelihood, define profile likelihood ratio (PLR):

● Test statistics defined as:
 ,     , ...

● Can then build p-value and significance:
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distribution of test statistics



Asymptotic regime
● In large statistics data samples, the distribution of the test statistic is known 

according to Wilks’ Theorem (independently on the prior!):
○ χ2 distribution
○ parabolic shape around the minimum

⇒ can directly calculate p0 ⇒ significance

⇒ can get the uncertainty on µ 

● No need to use pseudo experiments
● This theorem holds true for even as few as

 ~ O(10) events in a data sample
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Profiling, pre-fit and post-fit
● Profile likelihood fit can:

○ change background prediction, if best-fit θ values different from θ0 
○ reduce uncertainty on background, through:

■ constraint of NPs 
("improved knowledge" of parameters that are affected by systematic uncertainties, 
i.e. data have enough statistical power to further constraint the NP)

■ correlations 
between NPs
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NP pulls, constraints and correlations
● Useful to monitor NP pulls and constraints:

○ they are "nuisance", but they are important!

● Important to consider also NP correlations:
○ uncertainties on NPs (and POI) extracted from 

covariance matrix, which includes correlation coefficients
■ correlation built by the fit, even if completely 

independent / uncorrelated sources of uncertainty before the fit
(correlation in the improved knowledge of the parameters)

■ (anti-)correlations can reduce total post-fit uncertainty!
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Impact of NP on the POI
● To answer the question "which systematics are more important?"

● The "ranking plot" shows pre-fit and post-fit impact of individual NP on the determination of µ:
○ each NP fixed to ± 1 pre-fit and post-fit sigmas (Δθ and Δθ = uncertainty on θ)
○ fit re-done with N-1 parameters
○ impact extracted as difference in 

central value of µ
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Splitting of uncertainties
● To answer a similar but different question:

○ how much of the total uncertainty comes from a certain set of systematic uncertainties?
○ or similarly, how large is the pure "statistical uncertainty"?

● Procedure:
○ fix a group of NPs to post-fit values
○ repeat the fit
○ look at error on µ this time 

and get Δµ as quadratic difference 
between full and reduced error

○ statistical uncertainty obtained 
by fixing all NPs
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Profiling issues
● The profile likelihood approach is valid with some assumptions

○ in particular, assumed that "nature" can be described by 
the model with a single combination of values for the parameters

● Cannot just take large uncertainties hoping that they are enough to cover 
for imperfect knowledge of S+B expectation!

● "Flexibility" / "granularity" of the systematics model needs to be considered
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nominal

syst "up"

syst "down"

This configuration will not be able to 
fit these points

following this 
"true" distribution



The constraint issue
● Flexibility more and more critical when statistical uncertainty on data becomes 

less and less important w.r.t. systematics
○ e.g. taking the example before:

● More real examples:
○ single JES systematic NP across all jet energy spectrum allows high-stats low-energy control 

regions/bins to calibrate JES for high energy jets → intended?
○ simple ± 50% overall uncertainty on tt+jets background, probably enough to cover 

uncertainties also in remote phase-spaces (tails of distributions for tt+HF-enriched selection), 
but data in tt+light-jets-enriched CRs will constrain it to <5%, propagated to SRs... → ok?

14

constraint by 
high stat. bins new physics!?

... no, data just following 
background real distribution...



Theory modeling systematics
● Experimental systematics nowadays often well suited for profile likelihood application:

○ come from calibrations ⇒ gaussian constraint appropriate
○ broken-down into several independent/uncorrelated components (JES, b-tagging...)

● Different situation for theory systematics:
○ difficulty 1: what is the distribution of the subsidiary measurement?
○ difficulty 2: what are the parameters of the systematic?

■ can a combination of the included parameters describe any possible configuration?
■ is any allowed value of the parameter physically meaningful?

● The obviously tricky case: "two point" systematics
○ e.g. Herwig vs. Pythia as "parton shower and 

hadronization model uncertainty",
as a single NP
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Theory modeling systematics
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One-bin case:
- reasonable to think that "Sherpa" 

can be between Herwig and Pythia

Shape case:
- Sherpa can be different from linear 

combination of Py and Her...

Which prior?

Pre-fit / non-constrained NP could be fine 
to cover for all possible models...

... but is this level 
of constraint ok?



Theory modeling systematics
● A not-so-obviously tricky case:

○ scale uncertainties
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Take NLO scale variations 
as uncertainty (missing NNLO MC)

+1

-1

⇒ flat uncertainty here, 
and NNLO is within 
uncertainty, but 
NNLO/NLO is not flat!

Suppose data looks like NNLO, we measure ytt, 
we constrain scale syst. in low ytt bins 
⇒ new physics at high ytt?
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Systematics model validation
● Especially given the impossibility to build a "perfect model", need to validate flexibility of 

the adopted systematics model (better if before looking at the full data!)
 

● Response of the model to injection tests:
○ build toy data (or Asimov data) with non-nominal properties

■ can vary parameters of the model 
(i.e. by shifting NPs when creating the Asimov data-set)

■ can use a MC generator not included 
in the systematics model to build the toy data

■ check compatibility of best-fit POI with injected value
 

● Post-fit plots:
○ evaluate data/prediction agreement across distributions with fit result projection 

(shifted prediction + reduced systematics band)
○ can spot issues e.g. if found disagreement in a region where don't expect signal
○ especially useful for validation regions / validation distributions

i.e. regions / distributions not directly used in the fit

● Mention for sure the test with modified Asimov dataset (from alternative MC sample for one or 
more backgrounds, not used in the definition of systematics model)

○ very useful to probe the flexibility of the fit model
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Statistical fluctuations on systematics
● Often systematic uncertainty definition affected by statistical uncertainty

○ typical example again from two-point systematics, evaluated as the difference between 
two statistically independent MC samples, and at least one of them statistically limited
 

● Current PLR formalism doesn't account for this effect:
effect of ±Δθj on S and B assumed 
to be known with no uncertainty

○ ongoing efforts (in ATLAS at least) to try to incorporate this, 
e.g. adding NPs for size of    ΔBij = [ Bi(θj=1) - Bi(θj=0) ]  →  ΔBij

0 ± Δ(ΔBij) = ΔBij
0 + νij ...

● To assess the size of the effect:
○ can use pseudo-experiments / toys (e.g. with bootstrap method)

■ repeat measurement N times and see distribution of Δµ
 

● To mitigate the effect:
○ ATLAS uses smoothing of systematic variations in single distributions

■ assumption of "regular" shape of systematic variation
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Including data-driven estimates into the fit model
● Often data-driven estimates provided as inputs for the PLR model

○ however, ideally better to include the estimate in the fit model
■ easier handling of correlations
■ natural way of considering signal contamination in control region

○ not always possible/easy 
(example: Matrix Method for fakes and non-prompt lepton background determination)

● With more and more data, natural to consider more and more 
data-driven or partially data-driven background estimation techniques, 
also for backgrounds currently estimated through MC and with NPs constrained by the data 

○ by building more data-driven predictions, possibly included in the PLR model, 
could reduce issues related to over-constraints of NPs 
and enhance model flexibility
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Assessing "goodness of fit"
● Quantification of overall goodness of a PLR fit (like χ2-probability)

○ this goodness of fit should consider both:
■ data/prediction agreement after the fit
■ pulls of nuisance parameters

○ can use maximum likelihood value, compared to a reference⇒ profile likelihood ratio
e.g. with saturated model (http://www.physics.ucla.edu/~cousins/stats/cousins_saturated.pdf) → used by CMS ttH(bb)

● Similar but different problem is to quantify the post-fit data/prediction agreement for individual 
plots/distributions (which can be part of the fit inputs or validation ones)

○ can define a χ2-like variable, but need to take into account correlations between 
systematics in different bins and correlation between systematics

■ considered in internal review of ATLAS ttH(bb):
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in bin i

nominal 
prediction 
in bin i

correlation 
coefficient

pred. in bin i with 
syst. variation n

g.o.f. = Prob(-2logλ)

built setting 
prediction = data
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Combination of measurements
● With the PLR approach, combination of different 

measurements is natural:
○ "just" add some more bins to the product

 

● However, important to consider compatibility of models:
○ orthogonality of channels:

■ bin contents in PLR are supposed to be 
statistically independent

○ same definition of (set of) POI:
■ sometimes obvious, but not always 

(is µ applied to all the ttH, or just one decay channel? What about tH? ...)
○ compatible set of systematics:

■ this is the most tricky part, especially for ATLAS+CMS combinations!
■ mainly dealing with the question "which NPs are correlated between channels?"
■ often cannot reach perfect solution, need to test different correlation assumptions

(notice that in PLR formalism systematics are either fully correlated or fully uncorrelated...)
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Summary and conclusions
● Profile likelihood ratio (PLR) approach presented, in the context of ttH analyses

(mainly in the "binned case", i.e. ttH(bb) and multi-lepton channels)
○ tod, mefeatures and possible pitfalls discussed

● Room for fruitful discussion on the most critical points in these days
○ important to consider how the current approach will work and eventually evolve with:

■ more and more data
■ more and more precision measurements
■ more and more accurate/refined/rich theory predictions
■ new experimental analysis techniques...
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Backup

24



NP interpolation / extrapolation
● The "NP interpolation / extrapolation" controls how a variation of a NP θj reflects in a 

variation of the predicted yields (S(θj) and B(θj), in the various bins)
● Different schemes / codes are implemented in RooStats/RooFit, e.g.:

○ piecewise linear → default for shape component of systematics
○ polynomial interpolation / exponential extrapolation → default for norm. component

θ θ

B(θ) B(θ)
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Exclusion limits
● When looking for a tiny signal on top of background, 

worry to exclude signal due to a downward fluctuation

● So we use CLs to test a signal hypothesis (not a probability):
○ a downward fluctuation in S+B will not exclude signal since CLb will also be small

Using CLs+b, one would expect to
exclude the signal 5 % of the time
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Implementation (in ROOT)
● RooFit: toolkit to extend ROOT providing language to describe data models

○ model distribution of observable x in terms of parameters θ 
using probability density function PDF

● RooStats: project to provide advanced stat. techniques for LHC collaborations
○ built on top of RooFit

● RooWorkspace: generic container class for all RooFit objects, containing:
○ full model configuration 

(i.e. all information to run statistical calculations)
○ PDF and parameter/observables descriptions uncertainty/shape of nuisance parameters
○ (multiple) data sets

● HistFactory: tool for creating RooFit workspaces formatted for use with RooStats tools
○ meant for analyses based on template histograms
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