

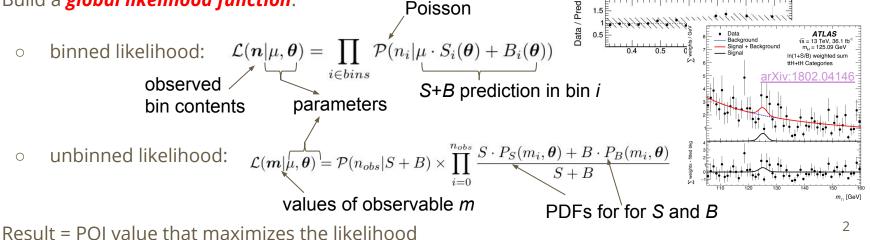
Statistical methods at ATLAS and CMS

Michele Pinamonti (ATLAS) — University and INFN Roma "Tor Vergata"

Higgs Toppings Workshop, Benasque 28th May - 1st June 2018

Building Likelihoods

- Most analyses (especially ttH/tH, with more data available...) are "*shape analyses*"
 - based on **distributions** of continuous observables
 - signal and background predictions depend on **parameters**:
 - parameter of interest, POI (e.g. signal strength μ)
 - eventually other ("nuisance") parameters, NPs (e.g. background normalization...)



arXiv:1804.03682

35.9 fb⁻¹ (13 TeV)

 $15 \times t\bar{t}$

tt+2b

Single t tt+V

CMS

10⁴ ttH node

Events /

SL (≥6 jets, ≥3 b tag

Pre-fit expectation

The Profile Likelihood approach

- The profile likelihood is a way to include **systematic uncertainties in the likelihood**
 - systematics included as "constrained" nuisance parameters
 - the idea behind is that systematic uncertainties on the measurement of μ come from *imperfect knowledge* of parameters of the model (*S* and *B* prediction)
 - still *some knowledge* is implied: " $\theta = \theta_0 \pm \Delta \theta$ "

$$\mathcal{L}(\boldsymbol{n},\boldsymbol{\theta}^{0}|\boldsymbol{\mu},\boldsymbol{\theta}) = \prod_{i \in bins} \mathcal{P}(n_{i}|\boldsymbol{\mu} \cdot S_{i}(\boldsymbol{\theta}) + B_{i}(\boldsymbol{\theta})) \times \prod_{j \in syst} \mathcal{G}(\theta_{j}^{0}|\theta_{j},\Delta\theta_{j})$$

$$\stackrel{\boldsymbol{\theta}}{=} 0 \text{ usually } \theta^{0} = 0 \text{ and } \Delta\theta = 1 \text{ (convention)}$$

$$\stackrel{\boldsymbol{\theta}}{=} 0 \text{ define effect of systematic } j \text{ on prediction } x \text{ in bin } i \text{ at "+1" and "-1",}$$

$$\stackrel{\boldsymbol{\theta}}{=} 0 \text{ then interpolate & extrapolate for any value of } \theta$$

external / *a priori* knowledge interpreted as "**auxiliary/subsidiary measurement**", implemented as **constraint/penalty term**, i.e. probability density function (*usually Gaussian, interpreting* "±Δθ" as Gaussian standard deviation)

0.025

Normalization factors and MC statistics

- Beside NP associated to systematic uncertainties, other NP can be included in the likelihood as *free parameters*, in the same way as the POI:
 - called "normalization factors" (NF)
 - no prior, multiplicative factors (⇒ linear) for particular S, B or B components:

 $B(\theta, k) = k \cdot B(\theta)$

- Statistical uncertainty from **limited number of** (MC) **events** used to build the histograms for predicted **S** and **B** result in **independent uncertainties in each bin**, referred to as "**MC stat**."
 - implemented as additional NPs (one per bin) with scaled Poisson ("gamma") priors
 - default: single MC-stat NP assigned to total prediction (*S*+*B*) in each bin:
 - problematic for signal, or in general component of the prediction with the POI attached to it (e.g. if these NP get pulled)
 ⇒ NOT applied to signal
 - could consider to **split it**: useful?

Categories, SRs, CRs...

- Multiple analysis regions / event categories often used:
 - decay modes
 - kinematic selections
- Useful to model these **separately** if
 - **sensitivity** is better in some regions (*avoids dilution*)
 - some regions can *constrain* NPs (*including NP for systematics*)

D 97

vs = 13 TeV, 36.1 fb

/bin

600 ATLAS

500 Dilepton

300

200

100

1.25

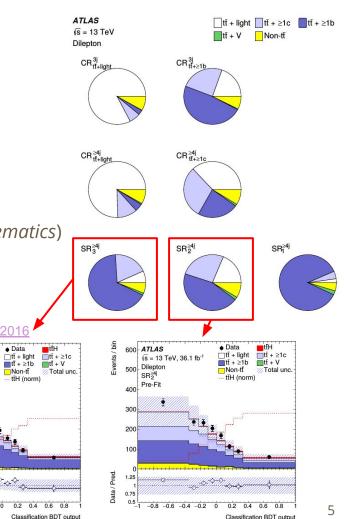
0.75

Data / Pred.

SR^{≥4j}

400 Pre-Fit

- e.g. *control regions* for backgrounds
- Analyse them simultaneously to model **correlations** between the regions (*common NPs*)
 - better than a-posteriori combination
- If no statistical correlations (orthogonal)
 ⇒ can simply take likelihood product
- Usually **coherent/correlated effect** of all parameters (*including NP for systematics*) in all bins, in all regions



Profile Likelihood maximization

With such a likelihood defined, the measurement of the parameter of interest (POI, or μ) becomes a *N-dimensional likelihood maximisation* (*or negative-log-likelihood minimization*) problem:

$$\mathcal{L}(n, \theta^{0} | \mu, \theta) = \prod_{i \in bins} \mathcal{P}(n_{i} | \mu \cdot S_{i}(\theta) + B_{i}(\theta)) \times \prod_{j \in syst} \mathcal{G}(\theta_{j}^{0} | \theta_{j}, \Delta \theta_{j})$$

$$\circ \implies \text{N-dimensional fit}$$

$$\bullet \quad \text{fit result is "best point"} (\mu, \theta)$$

$$(\hat{\mu}, \hat{\theta}_{0}, \dots \hat{\theta}_{N-1}) : \mathcal{L}(\hat{\mu}, \hat{\theta}) = max$$

Profile Likelihood Ratio

- Neyman-Pearson lemma:
 - the **likelihood ratio** $L(H_0)/L(H_1)$ is the **optimal discriminator** when testing hypothesis
 - H_1 vs. H_0 e.g. H_1 = presence of signal (μ >0), H_0 no signal (μ =0)
- In case of profile likelihood, define *profile likelihood ratio* (PLR):

Profile likelihood ratio only dependent on $\boldsymbol{\mu}$

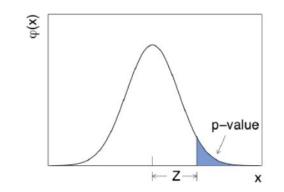
$$\Lambda(\mu) = \frac{\mathcal{L}(\mu, \hat{\hat{\theta}}_{\mu})}{\mathcal{L}(\hat{\mu}, \hat{\theta})}$$

Maximize L for a given μ 'conditional' likelihood

Maximize L 'unconditional' likelihood

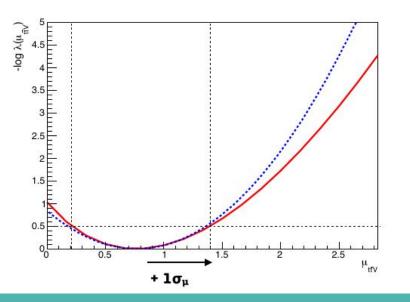
- **Test statistics** defined as: $t_{\mu} = -2 \ln \lambda(\mu)$, $q_0 = \begin{cases} -2 \ln \lambda(0) & \hat{\mu} \ge 0 \\ 0 & \hat{\mu} < 0 \end{cases}$, ...
 - $\int \left(0 \right) = \int \left(0 \right) \left(0 \right)$
- Can then build *p-value* and *significance*:

distribution of test statistics



Asymptotic regime

- In **large statistics** data samples, the *distribution* of the test statistic is **known** according to Wilks' Theorem (*independently on the prior!*):
 - χ2 distribution
 - parabolic shape around the minimum



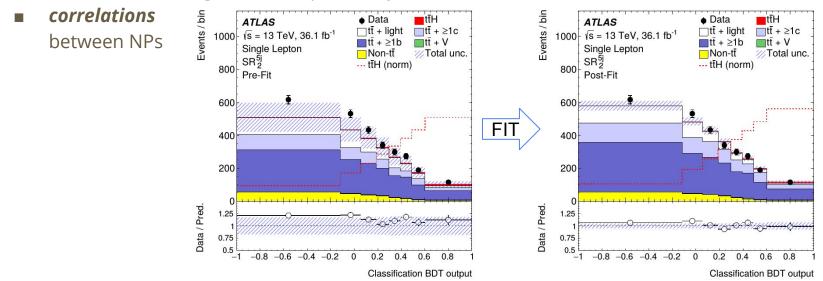
$$-2\log\lambda(\mu) = -2(\log L(\mu,\hat{\hat{\theta}}) - \log L(\hat{\mu},\hat{\theta})) = \left(\frac{\mu - \hat{\mu}}{\sigma_{\mu}}\right)^{2}$$

- \Rightarrow can directly calculate $p_0 \Rightarrow$ significance
- \Rightarrow can get the **uncertainty on** μ
 - No need to use pseudo experiments
 - This theorem holds true for even as few as
 - ~ O(10) events in a data sample

Profiling, pre-fit and post-fit

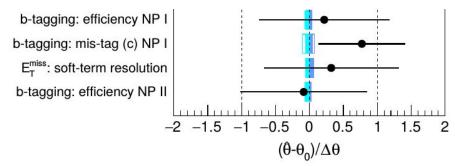
- Profile likelihood fit can:
 - **change background prediction**, if best-fit θ values different from θ_{α}
 - **reduce uncertainty** on background, through:
 - constraint of NPs

("improved knowledge" of parameters that are affected by systematic uncertainties, i.e. data have enough statistical power to further constraint the NP)

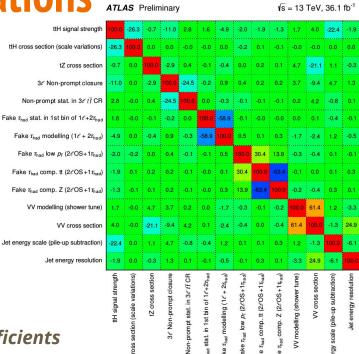


NP pulls, constraints and correlations

- Useful to **monitor** NP **pulls** and **constraints**:
 - they are "nuisance", but they are important!



- uncertainties on NPs (*and POI*) extracted from
 covariance matrix, which includes correlation coefficients
 - correlation built by the fit, even if completely
 independent / uncorrelated sources of uncertainty before the fit
 (correlation in the improved knowledge of the parameters)
 - (anti-)correlations can reduce total post-fit uncertainty!

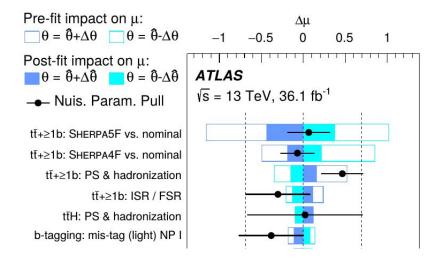


Phys. Rev. D 97. 072003

10

Impact of NP on the POI

- To answer the question "*which systematics are more important?*"
- The "**ranking plot**" shows *pre-fit* and *post-fit* **impact** of **individual NP** on the determination of μ :
 - **each NP fixed** to ± 1 pre-fit and post-fit sigmas ($\Delta \theta$ and $\Delta \hat{\theta}$ = uncertainty on $\hat{\theta}$)
 - fit re-done with *N-1* parameters
 - impact extracted as difference in **central value** of μ



Splitting of uncertainties

• To answer a similar but different question:

Dracadura

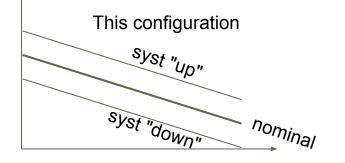
- how much of the total uncertainty comes from a certain *set of* systematic uncertainties?
- or similarly, how large is the pure "statistical uncertainty"?

arXiv:1804.03682

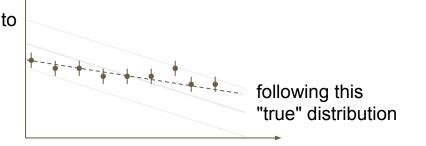
Proc	edure:	Uncertainty source	$\pm \Delta \mu$ (observed)	$\pm \Delta \mu$ (expected)
0	fix a group of NPs to post-fit values	Total experimental	+0.15/-0.16	+0.19/-0.17
0	repeat the fit look at error on µ this time	b tagging	+0.11/-0.14	+0.12/-0.11
0		jet energy scale and resolution	+0.06/-0.07	+0.13/-0.11
	and get $\Delta \mu$ as quadratic difference	Total theory	+0.28/-0.29	+0.32/-0.29
0	between full and reduced error statistical uncertainty obtained by fixing all NPs	tī+hf cross section and parton shower	+0.24/-0.28	+0.28/-0.28
Ũ		Size of the simulated samples	+0.14/-0.15	+0.16/-0.16
		Total systematic	+0.38/-0.38	+0.45/-0.42
		Statistical	+0.24/-0.24	+0.27/-0.27
		Total	+0.45/-0.45	+0.53/-0.49

Profiling issues

- The profile likelihood approach is **valid** with some **assumptions**
 - in particular, assumed that "*nature*" can be described by the model with *a single combination of values* for the parameters
- Cannot just take *large uncertainties* hoping that they are enough to cover for imperfect knowledge of S+B expectation!



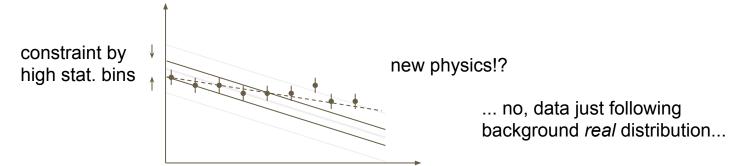
will not be able to fit these points



• "Flexibility" / "granularity" of the systematics model needs to be considered

The constraint issue

- Flexibility more and more **critical** when **statistical uncertainty** on data becomes less and less important w.r.t. systematics
 - e.g. taking the example before:



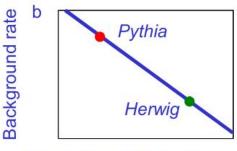
- More real examples:
 - single JES systematic NP across all jet energy spectrum allows high-stats low-energy control regions/bins to calibrate JES for high energy jets → intended?
 - **simple ± 50%** overall uncertainty on *tt*+jets background, probably enough to cover uncertainties also in remote phase-spaces (*tails of distributions for tt+HF-enriched selection*), but data in *tt*+light-jets-enriched CRs will constrain it to <5%, propagated to SRs... \rightarrow ok?

Theory modeling systematics

- *Experimental systematics* nowadays often well suited for profile likelihood application:
 - come from calibrations \Rightarrow gaussian constraint appropriate
 - broken-down into several independent/uncorrelated components (JES, *b*-tagging...)
- Different situation for **theory systematics**:
 - **difficulty 1:** what is the **distribution** of the subsidiary measurement?
 - **difficulty 2:** what are the **parameters** of the systematic?
 - can a combination of the included parameters describe **any possible** configuration?
 - is **any allowed value** of the parameter physically meaningful?

See: https://indico.cern.ch/event/287744/contributions/1641261/attachments/535763/738679/Verkerke Statistics 3.pdf

- The obviously tricky case: "two point" systematics
 - e.g. Herwig vs. Pythia as "parton shower and hadronization model uncertainty", as a single NP

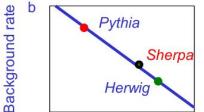


Nuisance parameter α_{gen}

Theory modeling systematics

One-bin case:

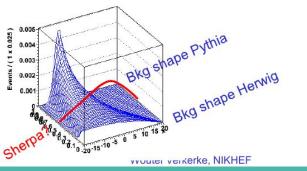
 reasonable to think that "Sherpa" can be between Herwig and Pythia

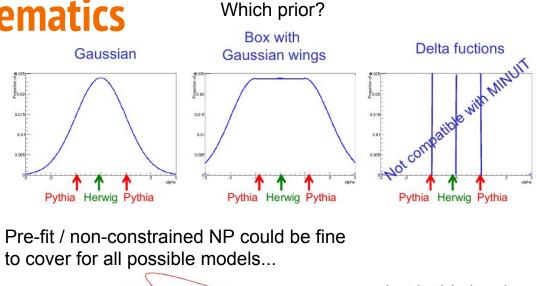


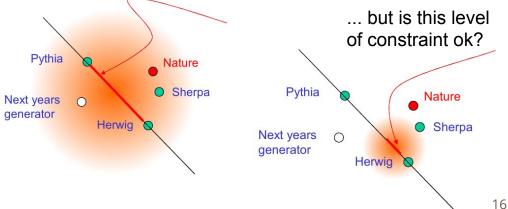
Nuisance parameter α_{gen}

Shape case:

- Sherpa can be different from linear combination of Py and Her...







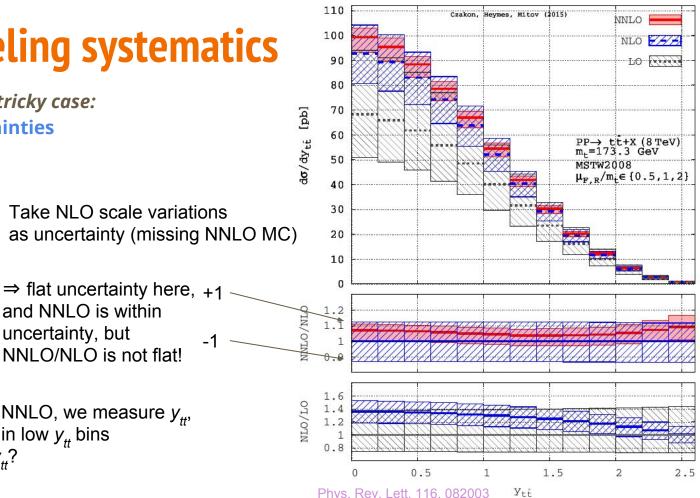
Theory modeling systematics

and NNLO is within

NNLO/NLO is not flat!

uncertainty, but

- A not-so-obviously tricky case:
 - scale uncertainties 0



Suppose data looks like NNLO, we measure y_{μ} , we constrain scale syst. in low y_{μ} bins \Rightarrow new physics at high y_{μ} ?

Systematics model validation

• Especially given the **impossibility to build a "perfect model"**, need to **validate flexibility** of the adopted systematics model (*better if before looking at the full data!*)

 $\mu = 1$

Fit

Asimov

S+B

μ

Fit

Asimov'

 $S+B(\theta=\theta')$

- **Response** of the model **to injection tests**:
 - build **toy data** (or *Asimov* data) with **non-nominal properties**
 - can vary parameters of the model
 (i.e. by shifting NPs when creating the Asimov data-set)
 - can use a MC generator not included in the systematics model to build the toy data
 - check compatibility of best-fit POI with injected value

- evaluate data/prediction agreement across distributions with fit result projection (shifted prediction + reduced systematics band)
- \circ can spot issues e.g. if found disagreement in a region where don't expect signal
- especially useful for validation regions / validation distributions
 i.e. regions / distributions not directly used in the fit

Fit

Asimov"

S+B'

Statistical fluctuations on systematics

- Often systematic uncertainty definition affected by **statistical uncertainty**
 - typical example again from two-point systematics, evaluated as the difference between two statistically independent MC samples, and at least one of them statistically limited
- Current PLR formalism **doesn't account** for this effect:

 $\mathcal{L}(\boldsymbol{n},\boldsymbol{\theta}^{0}|\boldsymbol{\mu},\boldsymbol{\theta}) = \prod_{i \in bins} \mathcal{P}(n_{i}|\boldsymbol{\mu} \cdot S_{i}(\boldsymbol{\theta}) + B_{i}(\boldsymbol{\theta})) \times \prod_{j \in syst} \mathcal{G}(\theta_{j}^{0}|\theta_{j},\Delta\theta_{j})$

0

i(*bins*) *j*(*syst*) to be **known with no uncertainty** ongoing efforts (in ATLAS at least) to try to incorporate this, e.g. adding NPs for size of $AB = [B(\theta=1) - B(\theta=0)] \rightarrow AB^{0} + A(AB) = AB^{0} + V$

e.g. adding NPs for size of $\Delta B_{ij} = [B_i(\theta_j=1) - B_i(\theta_j=0)] \rightarrow \Delta B_{ij}^0 \pm \Delta(\Delta B_{ij}) = \Delta B_{ij}^0 + V_1 \dots$ new NPs

- To assess the **size of the effect**:
 - can use **pseudo-experiments / toys** (*e.g. with bootstrap method*)
 - repeat measurement *N* times and see distribution of $\Delta \mu$
- To **mitigate** the effect:
 - ATLAS uses **smoothing of systematic** variations in single distributions
 - assumption of "regular" shape of systematic variation

effect of $\pm \Delta \theta_i$ on **S** and **B** assumed

n.p.e

Including data-driven estimates into the fit model

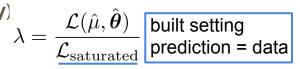
- Often data-driven estimates provided as inputs for the PLR model
 - however, ideally better to include the estimate **in the fit model**
 - easier handling of *correlations*
 - natural way of considering *signal contamination* in control region
 - not always possible/easy

(example: Matrix Method for fakes and non-prompt lepton background determination)

- With more and more data, **natural to consider more** and more data-driven or partially data-driven background estimation techniques, also for backgrounds currently estimated through MC and with NPs constrained by the data
 - by building more data-driven predictions, possibly included in the PLR model, could reduce issues related to over-constraints of NPs and enhance model flexibility

Assessing "goodness of fit"

- Quantification of **overall goodness** of a PLR fit (like **χ²-probability**)
 - this *goodness of fit* should consider both:
 - data/prediction agreement after the fit
 - pulls of nuisance parameters



g.o.f. = Prob(-2log λ)

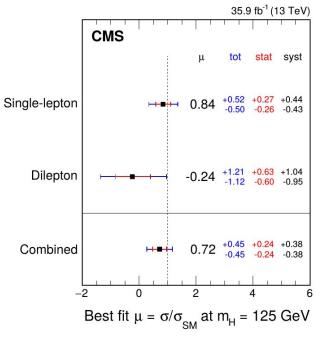
- can use maximum likelihood value, compared to a reference ⇒ *profile likelihood ratio* e.g. with *saturated model* (<u>http://www.physics.ucla.edu/~cousins/stats/cousins_saturated.pdf</u>) → used by CMS ttH(bb)
- Similar but different problem is to quantify the **post-fit data/prediction agreement** for individual plots/distributions (which can be part of the fit inputs or **validation** ones)
 - can define a χ^2 -like variable, but need to take into account correlations between systematics in different bins and correlation between systematics
 - considered in internal review of ATLAS ttH(bb):

 $\chi^{2} = \sum_{i} \sum_{j} (d_{i} - x_{i}) C_{ij}^{-1} (d_{j} - x_{j})$ nominal data in bin *i* in bin *i* in bin *i*

$$C_{ij} = \sum_{n} \sum_{m} (x_{i,n} - x_i) \rho_{nm} (x_{j,m} - x_j) + \delta_{ij} x_i$$
pred. in bin i with correlation syst. variation n coefficient

Combination of measurements

- With the PLR approach, **combination** of different measurements is **natural**:
 - "just" *add some more bins* to the product
- However, important to consider **compatibility of models**:
 - **orthogonality** of channels:
 - bin contents in PLR are supposed to be statistically independent
 - **same** definition of (set of) **POI**:
 - sometimes obvious, but not always (is μ applied to all the ttH, or just one decay channel? What about tH? ...)
 - **compatible** set of **systematics**:
 - this is the most tricky part, especially for ATLAS+CMS combinations!
 - mainly dealing with the question "which NPs are correlated between channels?"
 - often cannot reach perfect solution, need to test different correlation assumptions (notice that in PLR formalism systematics are either fully correlated or fully uncorrelated...)



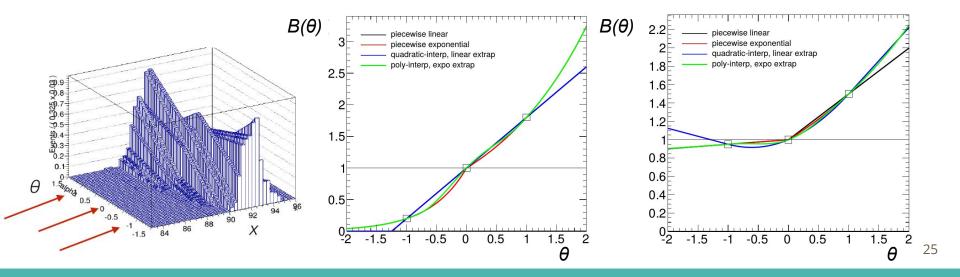
Summary and conclusions

- **Profile likelihood ratio** (PLR) approach presented, in the context of ttH analyses *(mainly in the "binned case", i.e. ttH(bb) and multi-lepton channels)*
 - tod, mefeatures and possible pitfalls discussed

- Room for **fruitful discussion** on the most critical points in these days
 - important to consider **how** the current approach **will work** and eventually **evolve** with:
 - more and more data
 - more and more **precision** measurements
 - more and more accurate/refined/rich theory **predictions**
 - new experimental analysis techniques...

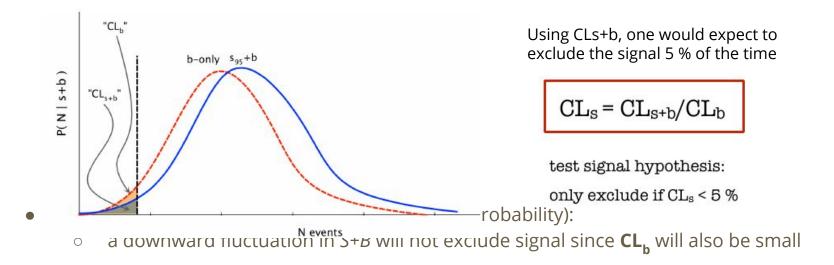
NP interpolation / extrapolation

- The "NP interpolation / extrapolation" controls how a variation of a NP θ_j reflects in a variation of the predicted yields (S(θ_j) and B(θ_j), in the various bins)
- Different schemes / codes are implemented in **RooStats/RooFit**, e.g.:
 - \circ *piecewise linear* \rightarrow default for *shape* component of systematics
 - \circ polynomial interpolation / exponential extrapolation \rightarrow default for norm. component



Exclusion limits

• When looking for a tiny signal on top of background, worry to exclude signal due to a downward fluctuation



Implementation (in ROOT)

- **RooFit:** toolkit to extend **ROOT** providing language to describe data models
 - model distribution of observable x in terms of parameters θ using probability density function PDF
- **RooStats:** project to provide advanced stat. techniques for LHC collaborations
 - built on top of **RooFit**
- **RooWorkspace:** generic container class for all **RooFit** objects, containing:
 - full model configuration
 - (i.e. all information to run statistical calculations)
 - PDF and parameter/observables descriptions uncertainty/shape of nuisance parameters
 - (multiple) data sets
- HistFactory: tool for creating RooFit workspaces formatted for use with RooStats tools
 - meant for analyses based on template histograms