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The FCC-hh Inner Triplets
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FCC Inner Triplets – Heat Load on Tungsten Shield
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Heat Load on the Tungsten Shield

Due to high specific heat load original
Q1B magnet (“Q1Borig”) was split

Rapid Reaction Team

Besana MI, Cerutti F, Delikaris D, Humann B,
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FCC Inner Triplets – Heat Load on Tungsten Shield
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- Tungsten Shield cooling between 40 – 60 K (compared to 1.8 K of Cold Mass)

- Large cooling channels in tungsten shield possible (due to impact distribution)

Heat Load on the Tungsten Shield

Due to high specific heat load original
Q1B magnet (“Q1Borig”) was split

Rapid Reaction Team

Besana MI, Cerutti F, Delikaris D, Humann B,
Martin R, Schörling D, Tavian L
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FCC Inner Triplets – Cold Mass Cryogenics
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Heat Load on the Cold Mass

Stainless
Steel Collar

Iron Yoke

dmax ≈ 100 mm

Available space
for cryogenics
installations

Tmax = 1.9 K

Free space for
pressurized su-
perfluid helium

Coil
Tmax = 4.5 K

1. Available space for cryogenics
installations is limited

2. Available driving temperature range for
heat extraction is limited

3. The range of specific heat loads varies
strongly for the single magnets
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Heat Load on the Cold Mass

Stainless
Steel Collar

Iron Yoke

dmax ≈ 100 mm

Available space
for cryogenics
installations

Tmax = 1.9 K

Free space for
pressurized su-
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Coil
Tmax = 4.5 K

1. Available space for cryogenics
installations is limited

2. Available driving temperature range for
heat extraction is limited

3. The range of specific heat loads varies
strongly for the single magnets

→ Small, reliable and possibly uniformly
designed cryogenic system needed
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Heat Load on the Cold Mass

Stainless
Steel Collar

Iron Yoke

dmax ≈ 100 mm

Available space
for cryogenics
installations

Tmax = 1.9 K

Free space for
pressurized su-
perfluid helium

Coil
Tmax = 4.5 K

Two approved cooling concepts
with superfluid He:

1. Two-phase cooling with
bayonet heat exchanger pipe

2. (Pure) Conduction cooling

1. Available space for cryogenics
installations is limited

2. Available driving temperature range for
heat extraction is limited

3. The range of specific heat loads varies
strongly for the single magnets

→ Small, reliable and possibly uniformly
designed cryogenic system needed
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The two-phase cooling scheme
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The two-phase cooling scheme

Cold mass immersed in a
pressurized static bath of
superfluid helium
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The two-phase cooling scheme

Cold mass immersed in a
pressurized static bath of
superfluid helium

Header C

TC = 4.6 K pC = 3 bar
Helium supplied by header C:
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The two-phase cooling scheme
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The two-phase cooling scheme

Feeder Pipe

Cold mass immersed in a
pressurized static bath of
superfluid helium

Header C

TC = 4.6 K pC = 3 bar
Helium supplied by header C:
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The two-phase cooling scheme

Feeder Pipe

Level Gauge

Cold mass immersed in a
pressurized static bath of
superfluid helium

Header C

TC = 4.6 K pC = 3 bar
Helium supplied by header C:
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FCC Inner Triplets – Two-phase cooling
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The two-phase cooling scheme

Feeder Pipe

Level Gauge

Cold mass immersed in a
pressurized static bath of
superfluid helium

Header C

Header B

TC = 4.6 K pC = 3 bar
Helium supplied by header C:

pB = 16 mbar
Helium discharged into header B:
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The two-phase cooling scheme

Feeder Pipe

Level Gauge

Cold mass immersed in a
pressurized static bath of
superfluid helium

Header C

Header B

TC = 4.6 K pC = 3 bar
Helium supplied by header C:

pB = 16 mbar
Helium discharged into header B:

→ Determines stratified flow
temperature (= T )pSat=17 mbar
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Heat extraction

Bad heat transfer
via vapour phase

Good heat transfer
via liquid phase

Tmax = 1.9 K

T2F ≈ 1.81 K
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Heat extraction

Bad heat transfer
via vapour phase

Good heat transfer
via liquid phase

DTmax

Tmax = 1.9 K

T2F ≈ 1.81 K
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Heat extraction

Bad heat transfer
via vapour phase

Good heat transfer
via liquid phase

DTmax

Pwet

Tmax = 1.9 K

T2F ≈ 1.81 K
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Heat extraction

Bad heat transfer
via vapour phase

Good heat transfer
via liquid phase

DTmax

Pwet

hLL

Tmax = 1.9 K

T2F ≈ 1.81 K
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Heat extraction

Bad heat transfer
via vapour phase

Good heat transfer
via liquid phase

DTmax

Pwet

hLL

Tmax = 1.9 K

T2F ≈ 1.81 K

Minimal hLL for
sufficient heat transfer
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Heat extraction

Bad heat transfer
via vapour phase

Good heat transfer
via liquid phase

Relative movement between liquid and vapour
phase determines shape of the surface:

Vapour velocity
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Heat extraction
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Heat extraction

Bad heat transfer
via vapour phase

Good heat transfer
via liquid phase

Relative movement between liquid and vapour
phase determines shape of the surface:

Vapour velocity
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vVap
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DTmax

Pwet

hLL

AVap

Tmax = 1.9 K

T2F ≈ 1.81 K

Maximal vVap determined
in experimental setup

Minimal hLL for
sufficient heat transfer
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Analytical estimation
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Analytical estimation

Intersection point with
helium 5 m/s-isotach
yields minimal diameter

→ for Q2C the minimal inner
diameter is about 70 mm
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Analytical estimation

Intersection point with
helium 5 m/s-isotach
yields minimal diameter

→ for Q2C the minimal inner
diameter is about 70 mm
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Steady-State Calculation

Two-phase cooling – Mathematical Model
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Mass balance:

Momentum
balance:

Thermal energy
balance:

Thermal conduction in
superfluid helium:

I. Longitudinal pressure drop in the two phases equal
II. Solving for minimal HX pipe diameter
III. Smooth stratified flow regime in HX pipe

Conditions:

Modelling 1D-equations:
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Numerical solutions
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Numerical solutions

Fullfilling backflow
mass conservation
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Numerical solutions

Fullfilling backflow
mass conservation

Solid permanent
liquid helium sump

No permanent
liquid helium sump
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Numerical solutions

Fullfilling backflow
mass conservation

Solid permanent
liquid helium sump

No permanent
liquid helium sump

Comparisons with former
experimental results indicate an over-
estimation of the wave generation of
the model (vVap < 5m/s)
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Numerical solutions

Fullfilling backflow
mass conservation

Solid permanent
liquid helium sump

No permanent
liquid helium sump

Comparisons with former
experimental results indicate an over-
estimation of the wave generation of
the model (vVap < 5m/s)

→ The requested maximal
diameter of 100 mm seems to
be feasible
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The conduction scheme
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The conduction scheme

Needed cross section area
for heat conduction α L1.3

→ Conduction cooling is
advantegeous for short magnets
(like in the Inner Triplets)
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The conduction scheme

Needed cross section area
for heat conduction α L1.3

→ Conduction cooling is
advantegeous for short magnets
(like in the Inner Triplets)

Option 1: One-Side-Cooling

Option 2: Two-Sides-Cooling

Two possible designs:
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Numerical solutions

• The Two-Side Conduction cooling option and the Two-Phase cooling need similar space
in the cold mass for cryogenics - both concepts seem to be in the feasibility’s range

• The choice could be made by different aspects (required space between adjacent
magnets, transient behavior, controlling effort, reliability, …)
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42

Summary

• Very high, but strongly non-uniform heat loads on the FCC Inner Triplet Magnets
challenge the cryogenics design (structure was changed to be able to design a reliable
cooling system for the available space)

• Two well-established cooling concepts were investigated

+ Less space needed for cryogenics + Robust concept and simple controlling

Two-Phase Flow Cooling Pure Conduction Cooling

• With both cooling concepts the space requirements are in the range of feasibility – the
possibility of choosing between different designs provides freedom of choice for taking
into account other aspects as well
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The end
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"What starts out as science fiction today may
wind up being finished tomorrow as a report.“

Norman Mailer

Thank you very much for your
attention!
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α tLiq-Wall

Supplemental – Wall Shear Stress (Liquid)
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Wall Shear Stress
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Two-Sides vapour extraction

Two-Sides vapour extraction could decrease
bayonet HX diameter size requirement
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Conduction Cooling Arrangements

Two-Sides-Cooling

One-Side-Cooling

General HX for Two-
Sides Cooling to
assure balancing

Combined helium baths
for adjacent magnets

One Jumper connection (HX, valve) for two
adjacent magnets for One-Side Cooling
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Supplemental – Conduction Cooling Vapour Generation (1/2)
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• rLiq = 145 kg/m3

• HX pipe diameters calculated to
reach a temperature of ≈ 1.9 K

• Minimal pressure head needed to
avoid saturation line (≈ 42 cm)

Conduction Cooling Vapour Generation (1/2)
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Supplemental – Conduction Cooling Vapour Generation (2/2)
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• Liquid helium
temperature in HX pipe
< 1.9 K for radial heat
transfer

• Two parallel
longitudinal heat fluxes
(in HX pipe and static
helium bath)

• Radial driving
temperature difference
increases towards
outlet

• Limit determined by
the magnets Q1A and
Q3B (T = 1.887 K →
30 – 40 cm head)

Conduction Cooling Vapour Generation (2/2)
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Mixed Cooling

High-loaded magnets: Two-
Sides Conduction Cooling

High-loaded magnets: Two-
Sides Conduction Cooling

Low-loaded magnets:
Combined bayonet
heat exchanger cooling


