Update in deposition of Nb Thick Films on Cu for 6GHz cavities
V. García, E. Chyhrynets, F. Stivanello, L. Zanotto, C. Pira

Abstract
Two main approaches are taken into consideration for this research: substrate and film reproducibility. In order to improve the substrate reproducibility, the standard mechanical grinding of the 6GHz cavities that leads to defects on the inner surface of the cavities that can remain even after chemical treatments, has been replaced for Vibrotumbling. For the film reproducibility, a Nb thick film between 40 and 70 microns is deposited to reproduce bulk Nb superconducting properties. On the other hand, we report the installed experimental setup to study the influence of trapped flux in 6 GHz cavities in: Nb bulk, Nb on Cu thin film and Nb on copper thick film.

Vibro-Tumbling
Nowadays, the mechanical treatment applied, was the mechanical grinding. After the grinding, the surface appears polished, but some deep scratches remain and it is not possible to remove them even with the EP. To solve this problem a vibrotumbling system has been designed, built and successfully tested.

The vibrotumbling process was optimized to a two-step procedure. The first step used in this case is alumina (Al₂O₃) and Rodastel 30 as wet media for 8 hours. The second step is done in order to polish the surface with coconut powder for 4 hours is applied.

Magnetic trapped flux
In order to study the effect of the magnetic trapped flux in 6 GHz cavities, a new setup has been installed, to measure (Fluxgate Bartington® MAG-01H) and to induce magnetic field in the cavity during the Niobium transition to the superconducting state (at Tc). Simulations show magnetic flux expelled by the cavity in the superconducting state. Simulations show magnetic field ratio at full expulsion close 1.4 due to the fluxgate dimensions respect to the 6GHz cavity.

Deposition of Nb on Cu 6GHz Cavities
For the deposition of Niobium on Copper 6 GHz cavities, the treated cavities are mounted in the deposition stand for sputtering process at 550°C.

The cavities were deposited in one shot and in multilayer deposition mode. Morphology characterization with EBSD technique has been done and shows how multilayer deposition mode promotes a uniform and bigger grain growth respect to one shot mode. Cavities with different single layer deposition thickness were RF characterized.

Cavity 21 was cut and characterized by EBSD, it was possible to observe a columnar growth that presented a homogeneous grain size at approximately 40 microns from the copper substrate.

Acknowledgements
EASITrain – European Advanced Superconductivity Innovation and Training. This Marie Skłodowska-Curie Action (MSCA) Innovative Training Networks (ITN) received funding from the European Union’s H2020 Framework Programme under grant agreement no. 764879.

This work was also supported by the INFN V group experiment ISIDE

Work performed under the CERN-INFN-STFC Agreement N. KE2728/BIE/FCC

FCC Week 2019 24-28 June
Bruxelles - Crowne Plaza Brussels Le Palace