

Abstract

We investigate the effects of dimension-eight operators of the anomalous neutral triple gauge boson interactions in ZZ production at 100 TeV centre of mass energy of circular hadron collider, namely FCC-hh. The analysis is performed on four-lepton final state including the realistic detector effects. The sensitivities to the charge-parity (CP)-conserving $C_{\tilde{B}W}/\Lambda^4$ and CP-violating C_{BW}/Λ^4 are obtained at 95% C.L through the analysis of invariant mass distribution of 4l system and the results are compared with the latest experimental limits from the LHC.

Introduction

	$\sqrt{s} = 100 \text{ TeV}, \ L_{int} = 10 \text{ ab}^{-1}$	√5	s = 100 TeV, <i>L</i> _{int} = 10 ab ⁻¹	 $\sqrt{s} = 100 \text{ TeV}, \ L_{\text{int}} = 10 \text{ ab}^{-1}$	 $\sqrt{s} = 100 \text{ TeV}, \ L_{int} = 10 \text{ ab}^{-1}$
			Signal -		
	SM		SM	SM	. SM
	:		· · · · · · · · · · · · · · · · · · ·	× *	
140				· · · · · · · · · · · · · · · · · · ·	

The dimension-eight (**dim-8**) effective Lagrangian for nTGC in the scope of EFT assuming the local $U(1)_{EM}$ and Lorentz symmetry can be written as $\boxed{1}$

$$\mathcal{L}^{nTGC} = \mathcal{L}_{SM} + \sum_{i} \frac{C_i}{\Lambda^4} (\mathcal{O}_i + \mathcal{O}_i^{\dagger}) \qquad (1)$$

1000

where *i* is the index of equations running over the operators. Two of them are given as

$$\mathcal{O}_{\widetilde{B}W} = iH^{\dagger}\widetilde{B}_{\mu\nu}W^{\nu\rho}\{D_{\rho}, D^{\nu}\}H, \quad (2)$$
$$\mathcal{O}_{BW} = iH^{\dagger}B_{\mu\nu}W^{\nu\rho}\{D_{\rho}, D^{\nu}\}H \quad (3)$$

The coefficients of these **dim-8** operators describing aNTGC are CP-conserving $C_{\tilde{B}W}/\Lambda^4$ and CP-violating C_{BW}/Λ^4 couplings. They are related to dimension-six operators aNTGC as described in Ref. [1].

Feynman diagrams of ZZ production for signal including an aNTGC vertex depicted by a red dot and for the SM background are given in Fig.1.

Fig. 1: Contributing diagrams to the process Cross sections for $pp \rightarrow ZZ$ production in the 4ℓ channel with aNTGCs including CP-conserving and CP-violating terms in the Lagrangian are given in Fig. 2.

leading Z vs. $m_{leading Z}$

Fig. 4: p_T of ℓ^1 (first plot) and ℓ^2 (second plot) from subleading Z vs. $m_{subleading Z}$

$$\Delta_i = \sqrt{\delta_{sys}^2 + 1/N_i^B}$$

Fig. 5: Distributions of the reconstructed four-lepton invariant mass m_{ZZ} . In the m_{ZZ} distribution, bin contents are normalized to the bin widths.

Results

(4)

(5)

We use invariant mass distributions of the reconstructed four-lepton invariant mass m_{ZZ} to get χ^2 values with and without systematic errors.

 $\chi^2 = \sum_{i}^{n_{bins}} \left(\frac{N_i^{NP} - N_i^B}{N^B \Lambda} \right)$

The signal cross sections of $pp \to ZZ$ production in the 4ℓ channel depending on dimension-8 couplings Fig. 2: at FCC-hh.

Generation of signal and background events

Event selection

• Considering 4ℓ final state, including three possible options; $e^+e^-e^+e^-$,

• Requiring the presence of a pair of lep-

- tons of the same or different flavors
- All permutations of leptons giving a pair

Conclusion and Discussion

In this study we present a phenomenological cut based analysis for probing the limits on the CP-conserving $C_{\tilde{B}W}/\Lambda^4$ and CP-violating $C_{BW}/\Lambda^4 \dim -8$ aNTG couplings via $ZZ \to 4\ell$ (where $\ell = e \text{ or } \mu$) production at the FCC-hh.

Fig. 6: Estimated sensitivity on aNTG couplings at 95%C.L. as a function of integrated luminosity where there is only one coupling varied at a time from its SM value.

The obtained 95% C.L. limits on the couplings with and without a systematic error are given in Table 2.

Couplings		Limit	s at 95% C.L.					
(TeV^{-4})	$ZZ \to 4\ell$ [7]	$Z\gamma \to \nu \bar{\nu}\gamma$ [8]	$\delta_{sys} = 0\%$	$\delta_{sys} = 3\%$				
$C_{\tilde{B}W}/\Lambda^4$	-5.9, +5.9	-1.1, +1.1	[-0.315, +0.315]	[-0.544, +0.544]				
C_{BW}/Λ^4	-3.3, +3.3	-0.65, +0.64	[-1.036, +1.036]	[-1.788, +1.788]				
Tab. 2: Estimated one dimensional 95% C.L. limits on								
aNTG couplings with and without a systematic error at								
$L_{int} = 10 a b^{-1}$. For each single anomalous coupling, all								
parameters other than the one under study are set to zero.								

• Even with 3% systematic errors, the obtained bounds at 95% C.L. for $C_{\tilde{B}W}/\Lambda^4$, C_{BW}/Λ^4 with an $\mathcal{L}_{int} = 10 \text{ ab}^{-1}$ at FCC-hh are better than the current LHC results on these couplings.

 $\mu^{+}\mu^{-}\mu^{+}\mu^{-}$, and $e^{+}e^{-}\mu^{+}\mu^{-}$

of Z/γ^* candidates are considered within each event.

The cut flow steps in the analysis for selecting the events are summarized in Table 1.

Cuts Definition Cut-0 Preselection: $N_{\ell_{(e,\mu)}} >= 4$ and two same-flavor opposite-charge lepton pairs Cut-1 Dileptons minimizing $|m_{\ell\ell}^a - m_Z| + |m_{\ell\ell}^b - m_Z|$ are taken as Z boson pair candidates Cut-2 Transverse momentum: $p_T^{\ell^1} > 20 \text{ GeV}, p_T^{\ell^2} > 12 \text{ GeV}$ (10 GeV) for $e(\mu)$ and $p_T^{\ell^{3,4}} > 5$ GeV Cut-3 Pseudo-rapidity: $|\eta^{\ell}| < 2.5$ Cut-4 $\Delta R > 0.02$ between all leptons Cut-5 Invariant mass: $80 < M_{inv}^{rec}$ (leading Z) < 100 GeV and $60 < M_{inv}^{rec}$ (subleading Z) < 110 GeV

Tab. 1: Preselection and a set of cuts for the analysis of signal and background events.

References

[1] C. Degrande, Journal of High Energy Physics, vol. 2014, no. 2, 2014. [2] J. Alwall et al., Journal of High Energy Physics, vol. 2014, no. 7, 2014. [3] T. Sjöstrand et al., Computer Physics Communications, vol. 191, pp. 159–177, 2015. [4] J. de Favereau et al., Journal of High Energy Physics, vol. 2014, no. 2, 2014. [5] P. Demin. [Online]. Available: https://cp3.irmp.ucl.ac.be/projects/ExRootAnalysis. [6] R. Brun *et al.*, *NIM A*, vol. 389, no. 1, pp. 81–86, 1997. [7] M. Aaboud et al., Phys. Rev. D, vol. 97, p. 032005, 3 2018. [8] The ATLAS Collaboration, ATLAS-CONF, vol. 2018, p. 035, 2018.

Acknowledgement

This work was partially supported by Turkish Atomic Energy Authority (TAEK) under the project grant no. 2018TAEK(CERN)A5.H6.F2-20.

