Comparison of the Sensitivities to Dimension-eight Operators for Anomalous Neutral Triple Gauge Couplings Through pp $\rightarrow \nu\nu\gamma$ Process at HL/HE-LHC and FCC-hh/

[2] Department of Energy Systems Engineering, Giresun University, 28200, Giresun, Turkey

[3] Department of Electrical and Electronics Engineering, Giresun University, 28200, Giresun, Turkey [4] Department of Physics, Ankara University, 06100, Ankara, Turkey

FCC WEEK 2019 Brussels, Belgium 24-28 June 2019

Couplings (TeV⁻⁴)

We study the effects of dimension-eight operators giving rise to anomalous neutral triple gauge boson interactions in $Z\gamma Z$ vertices through the $\nu\nu\gamma$ production at HL/HE-LHC and FCC-hh. The analysis is performed using transverse momentum of photon in the final state including a realistic detector effects for the future hadron colliders. The sensitivity to CP-conserving $C_{\widetilde{R}W}$ and CPviolating C_{BB} couplings are obtained at 95% C.L. The results are compared to the current experimental limits from ATLAS results.

THEORETICAL FRAMEWORK

The Lagrangian in the framework of an effective field theory for neutral Triple Gauge Couplings (nTGC) imposing local $U(1)_{EM}$ and Lorentz symmetry can be written as [1]

$$\mathcal{L}^{nTGC} = \mathcal{L}^{SM} + \sum \frac{C_i}{\Lambda 4} (\mathcal{O}_i + \mathcal{O}_i^{\dagger})$$

where i run over the label of the four operators which are expressed as

$$\mathcal{O}_{BW} = iH^{\dagger}B_{\mu\nu}W^{\mu\rho}\{D_{\rho}, D^{\nu}\}H$$

$$\mathcal{O}_{WW} = iH^{\dagger}W_{\mu\nu}W^{\mu\rho}\{D_{\rho}, D^{\nu}\}H$$

$$\mathcal{O}_{WW} = iH^{\dagger}W_{\mu\nu}W^{\mu\rho}\{D_{\rho}, D^{\nu}\}H$$

$$\mathcal{O}_{BB} = iH^{\dagger} B_{\mu\nu} B^{\mu\rho} \{ D_{\rho}, D^{\nu} \} H$$

$$\mathcal{O}_{\tilde{B}W} = iH^{\dagger} \tilde{B}_{\mu\nu} W^{\mu\rho} \{ D_{\rho}, D^{\nu} \} H$$

$$W_{\mu\nu} = \sigma^I(\partial_\mu W^I_\nu - \partial_\nu W^I_\mu + g\epsilon_{IJK} W^J_\mu W^K_\nu)$$

$$B_{\mu\nu} = (\partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu})$$

$$\langle \sigma^I \sigma^J \rangle = \delta^{IJ}/2$$
 $D_\mu \equiv \partial_\mu - i \frac{g'}{2} B_\mu Y - i g_w W^i_\mu \sigma^i$

The coefficients of these four dimension-eight operators describing anomalous Neutral Triple Gauge Couplings (aNTGC) are CP-conserving $C_{\widetilde{B}W}$ and CP-violating C_{RR} , C_{RW} , C_{WW} . They are related to dimension-six operators aNTGC as described in Ref. [1].

CROSS SECTIONS

Fig.2: The signal cross sections of $pp o
u \bar{\nu} \gamma$ depending on dimension-8 couplings at FCC-hh (A), HL-LHC (B) and HE-LHC © with $p_T^{\gamma} > 100$ GeV.

Couplings (TeV⁻⁴)

ANALYSIS AND SIMULATION DETAILS

Event generation by MadGraph5_aMC@NLO [2] signal and all background process

Parton Shower and Hadronization **PYTHIA 8 [3]**

Pre-selection

• $N_{\gamma} > 0$ • $|\eta^{\gamma}| < 2.5$

• $p_T^{\gamma} > 10 \text{ GeV}$

MET

Fast Simulation by **Delphes 3.4.1 [4]** with FCC-hh.tcl and CMS_phaseII_140PU_conf4.tcl

Couplings (TeV⁻⁴)

Fig. 3: The \mathcal{P}_T^{γ} distributions (top) and MET distributions (bottom) of the signal for $\,C_{\widetilde{B}W}\,$ coupling and corresponding SM background of $\,pp o
uar
u\gamma$ process. Columns correspond to FCC-hh, HL-LHC and HE-LHC, respectively.

δ_{sys}= 3% - — - -

We use the p_T^{γ} and MET HL-LHC distributions to obtain χ^2 values with and without a systematic error $\chi^2 = \sum_{i}^{n_{bins}} \left(\frac{N_i^{NP} - N_i^B}{N_i^B \Delta_i} \right)^2$ C_{BW}/Λ^4 (TeV⁻⁴) $C_{BB}/\Lambda^4 (TeV^{-4})$ $\Delta_i = \sqrt{\delta_{sys}^2 + \frac{1}{N_i^B}}$ δ_{svs}= 3% - — -HE-LHC **CUTS** used: $p_T^{\gamma} > 400 \text{ GeV } \& \text{MET} > 400 \text{ GeV}$

Fig. 5: Obtained χ^2 as a function of $C_{\widetilde{B}W}$ (left column) and C_{RR} (right column) couplings for HL-LHC (top) and HE-LHC (bottom).

Fig. 4: The p_T' distributions (top) and MET distribution (bottom) of the signal for $C_{\it BB}$ coupling and corresponding SM background of $pp o
u ar{
u} \gamma$ process. Columns correspond to FCC-hh, HL-LHC and HE-LHC, respectively.

Fig. 6: Two dimensional 95% C.L. Intervals in a plane of $C_{\widetilde{B}W}$ and C_{RR} couplings with taking 0%, 1% and 3% systematic errors at $L_{int} = 3 \text{ ab}^{-1} [7]$.

RESULTS AND DISCUSSION

The current limits on dimension-8 aNTG couplings $C_{\widetilde{B}W}$ and C_{RB} from ATLAS collaboration (Ref.[6]) compared with our expected limits at 95% C.L. for HL-LHC with $L_{int} = 3 \text{ ab}^{-1}$, HE-LHC with $L_{int} = 15 \text{ ab}^{-1}$ and FCC-hh with $L_{int} = 3 \text{ ab}^{-1}$.

Couplings (TeV^{-4})	ATLAS	HL-LHC	HE-LHC	FCC-hh
$C_{ ilde{B}W}/\Lambda^4$	-1.1, +1.1	-0.27, +0.36	-0.12, +0.12	-0.084, +0.084
C_{BB}/Λ^4	-0.24, +0.24	-0.20, +0.20	-0.085, +0.085	-0.072, 0.072

 C_{BB}/Λ^4 (TeV⁻⁴)

FCC-hh provides one order of magnitude better limits than latest LHC results (Ref.[6]) on dimension-8 aNTG couplings; $C_{\widetilde{B}W}$ and C_{BB} .

REFERENCES

- [1] C. Degrande, JHEP 1402, 101 (2014).
- [2] J. Alwall et al., JHEP 1407 (2014) 079.
- [3] T. Sjostrand, S. Mrenna and P. Z. Skands, JHEP 0605, 026 (2006).
- [4] J. de Favereau et al., JHEP 1402, 057 (2014).
- [5] http://madgraph.hep.uiuc.edu/Downloads/ExR ootAnalysis.
- [6] T. A. Collaboration (The ATLAS Collaboration), ATLAS-CONF 2018, 035 (2018).
- [7] A. Senol et al., Nuc. Phys. B. 935, 365-376 (2018)

ACKNOWLEDGEMENTS

This work was partially supported by Turkish Atomic Energy Authority (TAEK) under the grant no: 2018TAEK(CERN)A5.H6.F2-20