

Test of HTS Demonstrator Coils at High Field and Variable Temperature in the SULTAN Facility

X. Sarasola¹, P. Bruzzone¹, K. Sedlak¹, B. Stepanov¹, J. van Nugteren², G. Kirby², G. de Rijk², L. Bottura², L. Rossi²

- ¹ École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-5232 Villigen, Switzerland.
- ² European Organization for Nuclear Research (CERN), CH-1211 Geneva, Switzerland.

SULTAN facility

Field generated by 3 pairs of **split solenoids**:

- B_{max} = 10.905 T in the test well
- Homogeneity (2%) along ±200 mm

Nb-Ti trafo can supply 100 kA at 4.5 K to sample. Typically, samples are Cable-in-Conduits.

Sample counter cryostat

- Required for the test of the FeaTHeR coils
- Confines flow of He gas in a volume where temperature is regulated: 4.8 to 50 K
- Helium pressure: p_{He} = 10 bar
- 2880 mm-long cylindrical stainless steel chamber (OD 88.9 mm, ID 83.7 mm)

HTS current adapter

Test of FeaTHeR M0.4 (Oct 2017)

- Lead-to-adapter joints (indium): R < 6 nΩ
- Coil-to-lead joints (soldered): $R < 12 \text{ n}\Omega$
- Largest contribution to the overall sample resistance comes from the coil:
 - R_{coil} = 35 n Ω (at 5.2 K and 10 kA)
 - R_{coil} grows dramatically after high field runs
- Heat generation observed inside the coil.

Lead-to-coil joint (right)

FeaTHeR coils

 FeaTHeR-M0 are sub-scale racetrack coils wound with REBCO-Roebel cable.

Coil	Tape supplier	# tapes	tape width	cable width
FM0.4	Bruker	15	5.5 mm	12 mm
FM0.5	SuNAM	15	5.5 mm	12 mm

Lead extensions

- The lead extensions of the FeaTHeR coils have to be unsoldered and replaced by ~1.6-m-long leads for the test in the high field region.
- Each lead extension is made of 11×12-mm-wide tapes in a Cu profile.

Reinforced structure

Instrumentation

- Cernox temperature sensors
 - 8 coil sensors + 5 infrastructure
- · Voltage taps:
 - · Paired consecutive V taps
 - · Additionally: V6-V7 (coil), V4-V9 (coil+ext) & L+-R- (overall)

Test of FeaTHeR M0.5 (Mar 2019)

- FM05 is also resistive since the first run.
- R_{coil} = 39 $n\Omega$ (at 5.0 K and 5.0 kA), but also grows dramatically after high field runs.
- \bullet Largest contribution to $\mathbf{R}_{\mathsf{sample}}$ comes from coil-to-lead joints (indium): $R > 100 \text{ n}\Omega$
- · Pickup coils were installed, but no quench-

Summary

- Two HTS demonstrator coils have been tested at variable temperature and high magnetic field in SULTAN.
- Both tests were **limited** by the apparent **resistance across the coil**, which increased dramatically after the tests at high field.
- Coil-to-lead resistance was also a few hundred $n\Omega$ in the coil FM0.5:
- No definite explanation is found
- **Heat generation** is observed inside both coils since the very first runs.

This work is partly supported by **EuCARD-2**, which is co-funded by the partners and the European Commission through the Capacities 7th Framework Programme under the Grant Agreement GA312453.