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1. Detector magnets for FCC-ee
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For FCC-ee two detector designs are proposed:

• a conventional 2T solenoid around the calorimeter, essentially a downscaled CLIC design, 
not further presented here,

• a challenging 2T solenoid “ultra-thin & transparent” around the tracker, proposed by the 
magnet team and accepted as baseline.

CLIC style downscaled 
2T solenoid IDEA detector, innovative thin solenoid around tracker



Solenoid inside or outside calorimeter
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Solenoid outside or inside calorimeter?

Motivation:
• Magnetic field is only required 

in the tracker + muon chambers, 
but most stored magnetic 
energy (some 80%) is wasted in 
the calorimeter space!

Obvious savings when coil is 
positioned inside:

• Factor ≈ 4.2 in stored energy
• Factor ≈ 2.1 in cost!

But design is not obvious and 
requires R&D and a demonstrator.



Solenoid for IDEA detector

Requirements:

• 2 T in thin Solenoid with radiation 
length X0 < 1 in radial direction!

• Radial envelope < 300 mm.

• Magnetized iron for muon detection.

Strategy:

• Reduce thickness of cold mass.

• Reduce thickness of cryostat.

• Magnetic flux return by a light return 
yoke.
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IDEA detector (International Detector Electron Accelerators), 
an innovative thin solenoid around tracker



Property Value

Magnetic field in center [T] 2

Free bore diameter [m] 4

Stored energy [MJ] 170

Cold mass [t] 8

Cold mass inner radius [m] 2.2

Cold mass thickness [m] 0.03

Cold mass length [m] 6

FCC-ee 2T “thin” solenoid inside HCAL
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• 5mT stray field in radial direction at 15 m, in axial direction at 20 m

• Coil composition: mainly aluminum (77 vol.%) + copper (5 vol.%) + 
NbTi (5 vol.%) + glass/resin/dielectric film (13 vol.%).

Radiation thickness:

• Cold mass: X0 = 0.46, λ = 0.09 

• Vacuum vessel (25 mm Al): X0 = 0.28

• Preliminary design shows that achievable is total X0 = 0.8 < 1 !

R
ad

ia
l p

o
si

ti
o

n
 r

[m
]

Axial position z [m]

2               1.6   1.2  0.8

B [T]

0.1

0.2

0.4

FCC-ee: 2T in ø4.4 m x 6 m

≈ 1.1 x in length

≈ 1.7 x in diameter 



R&D for a Thin & Transparent Solenoid

Crucial technologies to be developed:

• High YS Super-Conductor allowing self-supporting coil windings.

• Maximum energy extraction at quench to minimize cold mass 
hot spot temperature.
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• New ultra-light cryostat design following two routes:

o high level of thermal insulation and mechanical support 
through metal foil sealed glass spheres or permaglass under 
vacuum (not presented here).

o lightest possible metallic-vacuum cryostat using honeycomb 
structures or corrugated plate-sandwich panels.

1st design shows that it is feasible; would be a breakthrough 
towards lighter and smaller detector magnets, and significant 
cost saving.



Al+0.1wt% Ni stabilizer

Conductor 

radial 

thickness: 

30 mm

(Including 

insulation)

Conductor axial thickness: 10 mm (including insulation)

NbTi+Cu Rutherford 

cable: 20 x 1.35 mm 

Ø NbTi/Cu strand

Al-alloy 

(Al7020 or Al7068

EB welded reinforcement, Sgobba [2010]

R&D on Conductor – Reinforced conductor

Conductor:

• NbTi/Cu Rutherford cable, Al 0.1%Ni stabilizer,  
welded Al-7xxx alloy bar reinforcements

• 20 kA operating current, 0.85 H self-inductance

• 6.5 K current sharing temperature (at 3.2 T peak)

• 2.0 K temperature margin at 4.5 K cooling

• 100 MPa combined Yield Strength of Al-Ni + NbTi
core + G10 insulation

• 280 MPa local peak stress

• 1 layer coil, 595 turns, conductor length 8.3 km

• Energy over mass density: 24 kJ/kg.
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Loads

Tracker mass [t] 4

External pressure [MPa] 0.1

Self mass [t] 7

Cold mass + rods thermal 

shrinkage [kN]*
215

* Initial estimate is 3 times the weight of the cold mass 

R&D on Cryostat – Using thin reinforced outer shell

Main features:

• CAL is supporting the cryostat

• Cold mass supports to end flanges

• Solid plate inner shell

• Outer shell reinforcement rings to 
prevent buckling

• Material Al 5083-O
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Inner shell Outer shell Flanges

Material Al 5083-O Al 5083-O Al 5083-O

Thickness  [mm] 3 15* 12

Min thickness [mm] 3 13 12

Max thickness [mm] 3 73 12

Shield thickness [mm] 3 3 3

Volume [t] 0.5 1.7 2 x 0.13

Mass [t] 1.4 5.2 2 x 0.4

Total mass [t] 7.4

Stress limits According to EN 13458



External shell Flanges

Material Al 5083-O Al 5083-O

Thickness  [mm] 9 15

Sin Amplitude [mm] 50 -

Wave period [mm] 500 -

Volume [t] 1 1.4 2 x 0.16

Mass [t] 1 3.8 2 x 0.5

Mass cryostat [t] 1 6.2

1 Including thermal shield

Cryostat option – Corrugated outer shell plate

Option for the external shell, use corrugated plate:

• More uniform thickness seen by particles

• Thickness of outer shell is very dependent on the period and 
amplitude of the corrugation

• Flat flanges may not be suitable in this case
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Best cryostat option – Use honeycomb-like plate

Option for the external shell, use honeycomb plate or 
sandwich panels:

• Drastic effective thickness reduction possible by using 
two separated plates with filling structure in between

When comparing the 4 solutions, honeycomb delivers 
the best minimum radiation thickness!
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Uniform plate Corrugated plate Reinforcement rings Honeycomb

Plate thickness [mm] 20.5 7.0 4.3 3.5

Radiation length [X0] 0.23 0.11 (mean) 0.05 (1.0) 0.04

Height 20.5 57 92 44
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Quench Protection and Hot-spot temperature

Quench protection:

• Relies on high percentage of 
extraction to reduce cold mass 
enthalpy

• And relies on quench heaters

• 1000 V peak extraction voltage 
accepted to yield 76% extraction

• Required conductor RRR> 400

• Normal quench scenario: 

Thotspot < 100 K

• Extreme fault scenario hot spot 
can be improved by using axial 
quench propagation strips.
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Fast dump 

relay

Rfastdump = 50 mΩ

Iop = 20 kA, L = 0.85 HSlow dump 

relay

Scenario Hot spot 

temperature [K]

Regular 87

Malfunctioning

heaters
150

Malfunctioning

extraction
118



2. FCC-hh Detector - Baseline
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Main solenoid: 
• Trackers and calorimeters inside bore, 

supported by the bore tube
• Muon chambers (for tagging) as outer 

layer in barrel region

Forward Solenoids (forward dipole is an option):
• Tracker inside solenoid
• Forward calorimeters after forward solenoids
• Enclosed by radiation shield
• Muon station behind 



2d Layout of reference detector - baseline
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4T/10m-bore Solenoid with 4T Forward Solenoids - baseline
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Concept: 
• 4 T in 10 m free bore
• Magnetic shielding not required 
• 60 MN net force on forward solenoids handled by axial tie rods
Result:
• Stored energy: 14 GJ, energy density 12 kJ/kg
• Main solenoid cold mass 1070 t, forward solenoids 48 t
• Lowest degree of complexity from a cold-mass perspective
• But with significant stray field to be coped with



Design evolution of the FCC detector magnet baseline
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“Everything should be 
made as simple as 

possible, but not simpler”

Design evolution towards:

• Lower stored energy, smaller, 
lighter designs

• Less complexity, size reduction, 
fewer coils

• Much more cost-effective, from 
≈ 0.9 M€ down to ≈ 0.35 M€

6T/12m bore Twin Solenoid + 
Balanced Forward Dipoles

Twin Solenoid + Balanced 
Forward Solenoids

Solenoid + Balanced 
Forward Solenoids

4T/10m bore Solenoid + Forward Solenoids



Super-Conductor for in 4T/10m baseline design solenoids

Next generation Aluminum-stabilized Rutherford 
conductors for 30-40 kA:

• Peak field on conductor 4.5 T

• Current sharing temperature 6.45 K

• 1.95 K temperature margin when operating at Top = 4.5 K 

• Nickel-doped Aluminum (≥0.1 wt.%): combines good electrical properties (RRR=600) with 
mechanical properties (146 MPa conductor yield strength [1]), Peak stress 100 MPa.

• Super-Conductors are key to success of any sc magnet, deserves the highest priority!
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Main 

Solenoid

Forward 

Solenoid

Current [kA] 30 30

Self-inductance [H] 28 0.9

Layers x turns 8 x 290 6 x 70

Conductor length [km] 83 2 x 7.7

Bending strain [%] 0.57 0.68

38.3 mm

65.3 mm

Main solenoid conductor

Al-0.1Ni

NbTi/Cu: 
40 x Ø 1.5 mm

62.5 mm

48.6 mm

Forward solenoid 
conductor

B



Magnet System - Main and Forward Cryostats

Heat loads
• Radiation: 360 W on cold mass, 6.8 kW on thermal shields
• Tie rods (Ti6Al4V rods, thermalized at 50 K): 

20 W on cold mass, 1.4 kW on 50 K thermalization points
• Acceptable heat loads, despite 60 MN force on forward solenoids

Materials and masses
• Main solenoid cryostat: ss 304L (high strength, min. space), 875 t
• Forward solenoid cryostat: Al 5083-O (minimal mass), 32 t
• Main cryostat mass 2 kt, forward cryostat mass 80 t

Mechanical aspects
• Bore tube of main cryostat supports 5.6 kt (Calorimeters & Tracker)
• Bore tube of forward cryostat supports 15 t (Forward tracker)
• Cryostats sufficiently strong to withstand: 60 MN net Lorentz force, 

mass of the calorimeters & trackers, gravity, seismic load of 0.15g, 
buckling load with multiplier 5.
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Main solenoid vacuum vessel

Forward solenoid vacuum vessel



Design 
• Main solenoid with 4 T in a 10 m free bore
• Forward dipole coils, to increase the bending capacity for high eta particles
• Forces  and torques need to be handled with tie rods and anchoring to the floor

Result
• More complicated cold-mass structure, largest superconducting dipole ever proposed
• Large forces &torques and loss of rotational symmetry, nasty for particle trajectory reconstruction
• Increased bending power for high eta particles, but also impact on crossing beams

Option: 4T/10 m Solenoid & Forward Dipole Coils
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• Side cavern positioned 62 m from IP.

• Stray field of FCChh detector at 4T is 5 mT in small area against the wall, 
and less everywhere else.

• Good mechanical machine requiring < 5mT.

• For FCCee with iron yoke it will be much less.

Stray field & shielding - Distance to Service Cavern

19



Electrical Circuit and Quench Protection

Electrical scheme

• Main and forward magnets are 
powered in series

• Main solenoid decoupled from forward 
magnets during quench (bypass diodes 
parallel to forward solenoids)

• Requires three current leads
20

Quench protection
• Main solenoid: Extraction + Quench heaters
• Forward solenoids: Quench heaters
• Nominal Quench: 56 K in main solenoid, 89 K

in forward solenoid, 73% extraction
• Not-working heaters: 142 K in main solenoid, 

133 K in forward solenoids



Main Cryogenics equipment is on surface, not underground

• Intervention on critical installations on surface including
Main & Shield refrigerators

• Sending high pressure (20 bar) helium gas down the shaft

• In cavern JT unit producing LiHe and filling dewars

• Distribution of liquid over the main and forward systems

• All coils are conduction cooled using thermosyphon He 
circulation through pipe work on cold masses

• One cold box (shown) or three cold boxes (baseline), for 
the main and each of the forward magnets

Power converters and diode/dump are on surface

• feeding the coils through SC link down the ≈350m shaft

Control and safety systems (MCS and MSS) on surface

Cryogenics, Powering and Controls
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Installation – main steps  (video available)

• Cavern requirement, dimensions 
and shaft sizes were determined. 

• Installation scenario of whole 
detector and service lines studied
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• Full 3d CATIA video film showing main steps of installation is available

• Inner detector cables and lines are routed to the exterior of the detector and then to side cavern

• Forward detectors use flexible chains placed on trenches allowing for longitudinal extraction

• For simplicity, only services routing to muon chambers in forward direction are shown.

Just a few pictures of main steps



3. LHeC Detector Magnet layout, CDR baseline

• Design concept: minimum cost, R&D and risk, relies on present technology for detectors magnets.

• 3.5 T Solenoid & 2 Dipoles in same cryostat around EMC, Muon tagging chambers in outer layer.

• Solenoid and dipoles have a common support cylinder in a single cryostat; free bore of 1.8 m; 
extending along the detector with a length of 10 m.
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Worst point with peak 
magnetic field 3.9 T



Adjustments for LHeC, LHeC+, HE-LHC, FCC-eh

LHeC(2014) LHeC+ HE-LHeC FCC eh

Function CDR design For comparison For HE-LHC For FCC

Location P2 P2 with L3 magnet P2 with L3 magnet Point L

B_solenoid [T] 3.5 3.5 3.5 3.5

B_dipole [T] 0.3 0.3 0.3 0.15

Dipole layout along entire 

detectors

along entire 

detectors

along entire 

detectors

along entire 

detectors

Free bore/Outer Diam.

x length [m]

1.80 - 2.28 

x 5.70

2.16 - 2.86 

x 5.78

2.42 - 3.14 

x 7.20

2.63 - 3.35 

x 9.18

Calorimeter warm warm warm warm

24

• Main parameters of the coils in the 4 h-e detectors (A.Polini, Sep 6, 2017)

• From LHeC towards FCC eh, essentially Increasing system bore and length

• For 2018 HE-LHC/FCC eh CDR we need to adjust the present design to these new specs

• Looks all very well doable!
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LHeC (CDR) Solenoid 3.5 T, 2.24 m OD, 7.1 m L

It will look like………a stretched and squeezed ATLAS solenoid, 

2 T scaled up to 3.5T (2 layer coil, slightly less free bore but a bit longer)

Relatively small bore but long, and efficient coil with 1.8 m free bore, 7.1 m long

• ≈ 11 km Al stabilized NbTi/Cu superconductor for 10 kA 

• ≈ 80 MJ stored energy and ≈ 24 t mass including cryostat.

No specific R&D needed, except detailed analysis of the dipole load case.

“Stretched & Squeezed ATLAS Solenoid”



Conclusion
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• Baseline Designs for the detector magnet systems for FCC ee, eh and hh
were developed and detailed in CDR chapters.

• FCC-ee IDEA detector:  a conceptual design of a 2T / 4m free bore / 6m long 
Solenoid surrounding the tracker was developed, a design using 300 mm 
radial space and 1 Xo radiation length is doable. 

• FCC-hh: a 4 T Main Solenoid, 10 m bore, 20 m long, complemented by two 
Forward Solenoids, 3.2 T center field in a 5 m bore, 4 m long. Also the option 
of using forward dipole magnets was developed.

• Safe Quench Protection design for all magnets was demonstrated. 

• Cryogenics based on using MR+SR on surface, with 20b/20K into cavern, JT-
liquefying in cavern into dewar and thermo-siphon cooling of cold masses.

• Cavern and Detector Installation studied, confirming installation feasibility. 

• No show stoppers identified, but a serious R&D program is required on 
reinforced superconductors and ultra-transparent cold masses and cryostats.


