Requirements for longitudinal HOM damping in FCC-hh

Ivan Karpov and Elena Shaposhnikova Acknowledgements:

Rama Calaga, Erk Jensen, and James A. Mitchell

Why damping of HOM is needed?

The FCC-hh is high-current machine with 10400 circulating bunches

→ Interaction of beam with high-order modes (HOM) can result in longitudinal coupled-bunch instability (CBI)

Unlike electron synchrotrons with strong synchrotron radiation, in FCC-hh we have to rely on Landau damping

How to evaluate the threshold? It can be obtained

- \rightarrow from particle tracking simulations (very difficult for FCC-hh)
- \rightarrow using semi analytical methods

Method of threshold diagrams

Dispersion relation obtained from Vlasov equation with assumptions (A. N. Lebedev 1968):

 \rightarrow There is a unique diagram for given resonant frequency $f_{\rm r}$

 \rightarrow In practice, it is difficult to use diagrams for threshold evaluation

3

Approximate threshold

Additional assumptions:

- Single RF system
- Short bunches with binomial distribution

Synchrotron frequency spread
$$\frac{\Delta\omega_s}{\omega_{s0}} = \frac{\omega_{RF}^2}{64} \left(1 + \frac{5}{3}\tan^2\phi_{s0}\right)\tau_b^2$$
Line density $\lambda(\tau) \propto \left[1 - \left(\frac{2\tau}{\tau_b}\right)^2\right]^{\mu+1/2}$ $\tau_{FWHM} = \tau_b \sqrt{1 - 2^{\frac{2}{2\mu+1}}}$
Threshold shunt impedance $R_{sh} < \frac{t_{bb}\omega_{RF}\tau_b V_{RF} \left|\cos\phi_{s0}\right|}{4eN_p} \frac{\Delta\omega_s}{\omega_{s0}} G_{\mu}(f_r\tau_b)$
 $G_{\mu}(x) = \frac{x}{\mu(\mu+1)} \min_{y \in [0,1]} [(1 - y^2)^{\mu-1}J_1^2(\pi x y)]^{-1}$

 \rightarrow R_{sh} depends on RF voltage, bunch length, and synchronous phase for constant intensity $_4$

Parameters during cycle

 \rightarrow Threshold of the loss of Landau damping is higher then longitudinal impedance budget

 \rightarrow Obtained parameters are used for longitudinal CBI threshold calculations

Results at 50 TeV

For the same $\tau_{\rm FWHM}$:

- \rightarrow The lowest $R_{\rm sh}$ is for $\mu = 1$
- \rightarrow Thresholds are similar for $\mu>1$

Threshold during cycle

Obtained from $\tau_{\rm FWHM}$ bunch length for $\mu = 1$

 \rightarrow The lowest value at flat bottom

HOMs in FCC-hh impedance model

Worst case scenario: f_r is the same in all cavities

 \rightarrow Damping of HOMs has to be revisited for Wide Opened Waveguide crab cavities

Sacherer formalism

Solution of dispersion relation is split in two parts (Sacherer 1973):

- Calculation of complex coherent frequency shift neglecting synchrotron frequency spread
- Removing dependence on $f_{\rm r}$ from stability diagram using Taylor expansion

 \rightarrow Sacherer approach underestimates threshold at higher frequencies

 \rightarrow The minimum of thresholds are similar for small μ

Summary

- The longitudinal coupled-bunch instability thresholds were evaluated for the FCC-hh cycle, which is optimised for longitudinal single-bunch stability.
- For the considered family of the binomial particle distributions, bunches with different μ (except $\mu = 1$) but the same FWHM bunch length have similar threshold shunt impedances.
- To prevent longitudinal CBI in FCC-hh due to HOMs of WOW crab cavities further damping is required.

Thank you for your attention!