Requirements for longitudinal HOM damping in FCC-hh

Ivan Karpov and Elena Shaposhnikova Acknowledgements:

Rama Calaga, Erk Jensen, and James A. Mitchell

Why damping of HOM is needed?

The FCC-hh is high-current machine with 10400 circulating bunches

→ Interaction of beam with high-order modes (HOM) can result in longitudinal coupled-bunch instability (CBI)

Unlike electron synchrotrons with strong synchrotron radiation, in FCC-hh we have to rely on Landau damping

How to evaluate the threshold? It can be obtained

- → from particle tracking simulations (very difficult for FCC-hh)
- → using semi analytical methods

Method of threshold diagrams

Dispersion relation obtained from Vlasov equation with assumptions (A. N. Lebedev 1968):

• Uniformly filled machine with spacing $t_{
m bb}$

•
$$\Delta f_{\rm r} = \frac{f_{\rm r}}{2Q} \ll \frac{1}{t_{\rm bb}}$$
, and $\Delta f_{\rm r} \ll \left| f_{\rm r} - \frac{l}{2t_{\rm bb}} \right|$

$$\frac{1}{Z_k(\Omega_c)} = G_{kk}(\Omega_c)$$

HOM impedance:

$$\frac{1}{Z_k(\Omega_c)} = \frac{1}{R_{\rm sh}} \left(1 - iQ \frac{\omega^2 - \omega_{\rm r}^2}{\omega \omega_{\rm r}} \right)$$
$$\omega = k\omega_0 + \Omega_c, \ k \approx \omega_{\rm r}/\omega_0$$

- \rightarrow There is a unique diagram for given resonant frequency $f_{\rm r}$
- → In practice, it is difficult to use diagrams for threshold evaluation

Approximate threshold

Additional assumptions:

- Single RF system
- Short bunches with binomial distribution

Phase of synchronous particle

Synchrotron frequency spread

$$\frac{\Delta\omega_s}{\omega_{s0}} = \frac{\omega_{RF}^2}{64} \left(1 + \frac{5}{3} \tan^2 \phi_{s0} \right) \tau_b^2$$

Line density
$$\lambda(\tau) \propto \left[1-\left(\frac{2\tau}{\tau_{\rm b}}\right)^2\right]^{\mu+1/2}$$
 $\tau_{\rm FWHM} = \tau_{\rm b}\sqrt{1-2^{\frac{2}{2\mu+1}}}$

Threshold shunt impedance $R_{\rm sh} < \frac{t_{\rm bb}\omega_{\rm RF}\tau_{\rm b}V_{\rm RF} \left|\cos\phi_{s0}\right|}{4eN_{\rm p}} \frac{\Delta\omega_{\rm s}}{\omega_{s0}} G_{\mu}(f_{\rm r}\tau_{\rm b})$

$$G_{\mu}(x) = \frac{x}{\mu(\mu+1)} \min_{y \in [0,1]} [(1-y^2)^{\mu-1} J_1^2(\pi xy)]^{-1}$$

 \rightarrow $R_{\rm sh}$ depends on RF voltage, bunch length, and synchronous phase for constant intensity

Acceleration cycle

Considerations:

- controlled emittance blow-up $\epsilon \propto \sqrt{E}$ for longitudinal single-bunch stability
- Maximum energy filling factor $q_p = \frac{\Delta E_B}{\Delta E_{max}} = 0.941$ to avoid losses

Parameters during cycle

- → Threshold of the loss of Landau damping is higher then longitudinal impedance budget
- → Obtained parameters are used for longitudinal CBI threshold calculations

Results at 50 TeV

For the same $\tau_{\rm FWHM}$:

- \rightarrow The lowest $R_{\rm sh}$ is for $\mu = 1$
- \rightarrow Thresholds are similar for $\mu > 1$

Threshold during cycle

Obtained from τ_{FWHM} bunch length for $\mu = 1$

→ The lowest value at flat bottom

HOMs in FCC-hh impedance model

Worst case scenario: f_r is the same in all cavities

→ Damping of HOMs has to be revisited for Wide Opened Waveguide crab cavities

Sacherer formalism

Solution of dispersion relation is split in two parts (Sacherer 1973):

- Calculation of complex coherent frequency shift neglecting synchrotron frequency spread
- Removing dependence on $f_{\rm r}$ from stability diagram using Taylor expansion

- → Sacherer approach underestimates threshold at higher frequencies
- \rightarrow The minimum of thresholds are similar for small μ

Summary

- The longitudinal coupled-bunch instability thresholds were evaluated for the FCC-hh cycle, which is optimised for longitudinal single-bunch stability.
- For the considered family of the binomial particle distributions, bunches with different μ (except $\mu=1$) but the same FWHM bunch length have similar threshold shunt impedances.
- To prevent longitudinal CBI in FCC-hh due to HOMs of WOW crab cavities further damping is required.

Thank you for your attention!