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HH at hadron colliders
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Small cross-section

Sensitive to 
New Physics effects
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In the SM, the process                       (Plehn, Spira & Zerwas, 1996)  present 
interference between boxes and triangle topologies:   the closer one gets to the 

threshold, the stronger the cancellation. (Li & Voloshin, 2013) Plehn, Spira & Zerwas, 1996

Stronger cancellation close to threshold

Li & Voloshin, 2013

Small in the SM = good for NP
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HH at lepton colliders

  

                                       

Tree Level diagrams suppressed 
being proportional to the electron 

mass

Standard Model Process
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∝ me ≈ 0

Tree-level
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∝ me ≈ 0

Tree-level

One-loop

  

                                       

Tree Level diagrams suppressed 
being proportional to the electron 

mass

The leading order is at 1-loop.

Standard Model Process
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∝ me ≈ 0
correction to the electron Yukawa 
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= 0 by parity conservation

P=-1
P=+1
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HH at lepton colliders

  

Mo
va
onStandard Model Process

In the end, the leading order is given just 
by 8 box-diagrams.
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FIG. 3: SM 1-loop loop box diagrams for e+e� ! hh.
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FIG. 4: SM cross section for e+e� ! hh as function of the center of mass energy
p
s.

III. EFT CONTRIBUTIONS TO e+e� ! hh

Double Higgs production at e+e� colliders in the SM has been shown to have a tiny cross section

of the order of fraction of femtobarns (see Fig. 4) as discussed in the previous section. However,

with large luminosities expected at future e+e� colliders, a few hundred events might eventually be

collected in the course of a few years, allowing for the experimental study of this final state. On the

other hand, cross sections can be enhanced by contributions coming from physics beyond the SM

and in this paper we want to entertain this possibility. In particular we will consider e↵ects of new

physics parametrized by the presence of higher dimensional operators in the SMEFT framework.

The general SMEFT lagrangian can be written as

LSMEFT = LSM +
X

i

c(n)i

⇤n�4
O

(n)
i + . . . (1)
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Bounds for 95% C.L. with k = 1
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ILC: 
60ev

CLIC 1500: 
~10 ev



SMEFT operators for HH
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Indirect detection of NP

• Assumption : NP scale >> energy probed in experiments 

Exp. range NP scale

E

Model independent searches for new physics

Resonances

Assumption : exchange of only
one particle

g g1
p2�m2

Example : Z boson

Effects : a peak in the invariant
mass distribution

Effective field theory

Assumption : New d.o.f are
heavy� Expansion in E2

�2 at low
energy

�g2

m2

Example : Fermi theory

Effects : m2/�2 normalisation
E2/�2 shape
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p2 ≪ m2

Ex : Fermi theory

One assumption : p2 ≪ m2

−
GF

Sqrt[2]
JμJμ, Jμ = Jl

μ + Jh
μ, Jl

μ = νlγμ(1 − γ5)l



C. Degrande

Dim6 operators for HH

L = LSM +
�

i

Ci

�2
O6

i

  

SM-EFT

We consider effects of new physics parametrized by 
the presence of higher dimensional operators in the 
SMEFT framework. We write the SMEFT lagrangian 
as

We focus on dimension-6 operators, and in 
particular we work in Warsaw basis. 

(Grzadkowski et al., 2010)
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Grzadkowski et al., 2010

Tree-level

One-loop 
thanks to  eeZ, 
evW, hZZ, hWW 
modification: 
Constrained 
by LEP/LHC
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Dim6 operators for HH

(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

Qll (l̄pγµlr)(l̄sγµlt) Qee (ēpγµer)(ēsγµet) Qle (l̄pγµlr)(ēsγµet)

Q(1)
qq (q̄pγµqr)(q̄sγµqt) Quu (ūpγµur)(ūsγµut) Qlu (l̄pγµlr)(ūsγµut)

Q(3)
qq (q̄pγµτ Iqr)(q̄sγµτ Iqt) Qdd (d̄pγµdr)(d̄sγµdt) Qld (l̄pγµlr)(d̄sγµdt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt) Qeu (ēpγµer)(ūsγµut) Qqe (q̄pγµqr)(ēsγµet)

Q(3)
lq (l̄pγµτ I lr)(q̄sγµτ Iqt) Qed (ēpγµer)(d̄sγµdt) Q(1)

qu (q̄pγµqr)(ūsγµut)

Q(1)
ud (ūpγµur)(d̄sγµdt) Q(8)

qu (q̄pγµTAqr)(ūsγµTAut)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt) Q(1)

qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

(L̄R)(R̄L) and (L̄R)(L̄R) B-violating

Qledq (l̄jper)(d̄sq
j
t ) Qduq εαβγεjk

[
(dαp )

TCuβr
] [
(qγjs )TClkt

]

Q(1)
quqd (q̄jpur)εjk(q̄ksdt) Qqqu εαβγεjk

[
(qαjp )TCqβkr

] [
(uγs )

TCet
]

Q(8)
quqd (q̄jpT

Aur)εjk(q̄ksT
Adt) Q(1)

qqq εαβγεjkεmn

[
(qαjp )TCqβkr

] [
(qγms )TClnt

]

Q(1)
lequ (l̄jper)εjk(q̄

k
sut) Q(3)

qqq εαβγ(τ Iε)jk(τ Iε)mn

[
(qαjp )TCqβkr

] [
(qγms )TClnt

]

Q(3)
lequ (l̄jpσµνer)εjk(q̄

k
sσ

µνut) Qduu εαβγ
[
(dαp )

TCuβr
] [
(uγs )

TCet
]

Table 3: Four-fermion operators.

isospin and colour indices in the upper part of Tab. 3. In the lower-left block of that table,
colour indices are still contracted within the brackets, while the isospin ones are made explicit.
Colour indices are displayed only for operators that violate the baryon number B (lower-right
block of Tab. 3). All the other operators in Tabs. 2 and 3 conserve both B and L.

The bosonic operators (classes X3, X2ϕ2, ϕ6 and ϕ4D2) are all Hermitian. Those containing
X̃µν are CP-odd, while the remaining ones are CP-even. For the operators containing fermions,
Hermitian conjugation is equivalent to transposition of generation indices in each of the fermionic
currents in classes (L̄L)(L̄L), (R̄R)(R̄R), (L̄L)(R̄R), and ψ2ϕ2D2 (except for Qϕud). For the
remaining operators with fermions, Hermitian conjugates are not listed explicitly.

If CP is defined in the weak eigenstate basis then Q−
(+)

Q† are CP-odd (-even) for all the
fermionic operators. It follows that CP-violation by any of those operators requires a non-
vanishing imaginary part of the corresponding Wilson coefficient. However, one should remem-
ber that such a CP is not equivalent to the usual (“experimental”) one defined in the mass
eigenstate basis, just because the two bases are related by a complex unitary transformation.

Counting the entries in Tabs. 2 and 3, we find 15 bosonic operators, 19 single-fermionic-
current ones, and 25 B-conserving four-fermion ones. In total, there are 15+19+25=59 inde-
pendent dimension-six operators, so long as B-conservation is imposed.

4

Most operators do not contribute (Parity/              )∝ me ≈ 0
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Q(3)
lq (l̄pγµτ I lr)(q̄sγµτ Iqt) Qed (ēpγµer)(d̄sγµdt) Q(1)

qu (q̄pγµqr)(ūsγµut)
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Dim6 operators for HH

6

where ⇤ is the mass scale of new physics, c(n)i are dimensionless coe�cients and n is the dimension

of the gauge invariant operators O(n)
i built up with SM fields. It allows for a systematic study of

deviations from the SM while respecting established symmetry principles.

In this work we focus on the contributions of dimension-six operators of the SMEFT because

they give the leading contributions in the systematic expansion E/⇤, where E is the typical energy

of the process (the unique dimension-five operator does not contribute to the process e+e� ! hh).

In this work we use the parametrization of [24]. In principle, all dimension-six operators that are

relevant for the electron and Higgs sector should be considered. However, several of these operators

are already constrained from other observables and therefore will not be taken into account in this

study. In particular, dimension-six operators that modify the ēeZ, e⌫W , hZZ and hWW vertices

are already (strongly) constrained by electroweak precision data and LHC Higgs measurements [25–

31] and we will safely ignore their e↵ects. We are then left with two classes of e↵ective operators

that can give sizable contributions: operators that induce an e↵ective ēehh coupling and operators

that generate an e↵ective ēet̄t coupling. The first class enters at tree-level while the second class

operators only contribute at one-loop.

There is a unique operator belonging to the first class

ce'
⇤2

('†'�
�2

2
)l̄L'eR + h.c. (2)

On the other hand there are seven four-fermion operators belonging to the second class, however

six of them give zero contribution because of their chirality structure and in the end we are left

with just one four-fermion operator

cet
⇤2

✏ij l̄
i
LeRq̄

j
LtR + h.c. (3)

In the equations above ce' and cet are dimensionless coe�cients, ⇤ is the scale of new physics,

l = (⌫ e), q = (t b), ' is the Higgs doublet and ✏ij is the total antisymmetric tensor of rank 2.

The operator in Eq. (2) has been written with the constant piece �2/2 subtracted to the invariant

'†' term in order to formally maintain the tree level relation me = ye�/
p
2 also in the e↵ective

theory. This mass relation is however altered by the potentially sizable loop correction to the

electron mass coming from the top-quark loop induced by the e↵ective operator in Eq. (3). The

contribution of this e↵ective operator to the electron self energy in dimensional regularization is
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are already (strongly) constrained by electroweak precision data and LHC Higgs measurements [25–

31] and we will safely ignore their e↵ects. We are then left with two classes of e↵ective operators

that can give sizable contributions: operators that induce an e↵ective ēehh coupling and operators
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Correction to 
the electron 
Yukawa
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These diagrams are UV
divergent

The operator that modifies the 
Yukawa coupling provides the 
counter-term for the top-loops
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Comments on the top loop
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The electron-Higgs interaction 
gets modifications

 at tree level from the operator

 

  
and at loop level from

The process in the SM-EFT
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7

given by
t

e� e+
cet

= �i⌃e = �i
6

(4⇡)2
cet
⇤2

m3
t

✓
1 +

1

✏̄
+ log

µ2

m2
t

◆
(4)

where 1/✏̄ = 1/✏� � + log 4⇡. Thus the inverse electron propagator reads

/p� ye
�
p
2
� �ye

�
p
2
� ⌃e (5)

In MS the Yukawa counterterm is chosen to be

�ye = �
6

(4⇡)2

p
2

�

cet
⇤2

m3
t
1

✏̄
(6)

such that the physical electron mass is given by1

me = ye
�
p
2
+

6

(4⇡)2
cet
⇤2

m3
t

✓
1 + log

µ2

m2
t

◆
(7)

From the theoretical point of view this mass correction may introduce a fine tuning problem and

in order to avoid it one must require that |�me|
<
⇠ me. In this case we have that

���
cet
⇤2

��� <⇠
8⇡2

3

me

m3
t

' 2⇥ 10�3TeV�2 (8)

By inverting Eq. (7) it is possible to express the relation between the Yukawa coupling and the cet

coe�cient as follows

ye(µ) =

p
2

�
me �

6

(4⇡)2

p
2

�

cet
⇤2

m3
t

✓
1 + log

µ2

m2
t

◆
(9)

Therefore, thanks to this relation, tree level diagrams of Fig. 1 proportional to ye are not negligible

anymore if cet 6= 0. Notice from eq. (9) that, contrary to the SM case, the limit of vanishing electron

mass does not imply a vanishing Yukawa coupling. The scale µ entering in Eq. (9) will be set

equal to 2mh in the computation of e+e� ! hh.

The operator in Eq. (2) introduces a tree level coupling of the electron to the Higgs given by

gēeh =
ce'�2

⇤2
p
2

(10)

1 If one had used an on-shell scheme, then the electron mass definition would have remained unchanged while the
Yukawa counterterm would have been modified including also the finite and µ-dependent piece. In the end the
two schemes give the same result, as it should be.
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Results for future colliders

  

Our Analysis

We compute the cross-section as a function of         and of the Wilson 
coefficients          and          , such that

Thus, the exclusion regions are computed through a      -distribution analysis

where the uncertainty is                              and

The computations were done using FeynRules, FeynArts + FormCalc + LoopTools
and cross-check with NLOCT and MG5_aMC@NLO.
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Benchmark scenarios considered in our analysis. 

The last two columns represent the 95 % CL intervals for each operator 
coefficient taken individually in the analysis with k = 1 (k = 0.35).

k factor keeps track of the Branching 
Ratio (k=0.35 just      decay)
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Other constraints
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By inverting Eq. (7) it is possible to express the relation between the Yukawa coupling and the cet

coe�cient as follows
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Therefore, thanks to this relation, tree level diagrams of Fig. 1 proportional to ye are not negligible

anymore if cet 6= 0. Notice from eq. (9) that, contrary to the SM case, the limit of vanishing electron

mass does not imply a vanishing Yukawa coupling. The scale µ entering in Eq. (9) will be set

equal to 2mh in the computation of e+e� ! hh.

The operator in Eq. (2) introduces a tree level coupling of the electron to the Higgs given by

gēeh =
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⇤2
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(10)

1 If one had used an on-shell scheme, then the electron mass definition would have remained unchanged while the
Yukawa counterterm would have been modified including also the finite and µ-dependent piece. In the end the
two schemes give the same result, as it should be.
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After considering all contributions to the ēeh vertex, it is possible to show that the recent upper

bound on the electron Yukawa coupling obtained from Higgs decay [32] ye < 600 ySMe implies that
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(11)

where f(m2
h,m

2
t ) is given in Appendix A. The operator in Eq. (2), besides modifying the ēeh vertex,

induces also an e↵ective ēehh coupling given by

gēehh =
3ce'�

2⇤2
p
2

(12)

which is not present in the SM. This operator contributes at tree level to e+e� ! hh, as shown

in Fig. 5. On the other hand, the operator in Eq. (3) contributes to e+e� ! hh through the

h

e�

e+

h

h

ce'

(a)

e�

e+

h

h

ce'

(b)

FIG. 5: Tree level contribution to e+e� ! hh coming from Eq. (2).

counterterm related to the redefinition of the Yukawa coupling of eq. (9) and it also enters directly

at one loop, as shown by the diagrams of Fig. 6.

Notice that the operator in Eq. (2) plays also the role of the counterterm needed to absorb the

divergence produced by the one-loop insertion of the operator in Eq. (3) and its coe�cient ce' has

to be formally taken as function of the renormalization scale µ. For the explicit derivation of the

counterterm see Appendix B. Therefore, in the process we are studying the coe�cients ce' and cet

are both formally evaluated at the scale µ = 2mh.

In our computation we consider just the leading contributions of the operator of Eq. (2) which

arise at tree level while the contributions of the operator of Eq. (3) comes at one loop. The total

cross section turns out to be a pure quadratic function of the coe�cients ce', cet, namely the only

sizable new physics contributions are of order c2e', c
2
et and ce'cet because linear terms coming from

the interference between SM diagrams, which are helicity conserving, and new physics diagrams,

which are helicity flipping, turns out to be proportional to me/� and therefore negligible. Helicity

  

Results – Addi
onal possible bounds

After considering all contributions to the  eeh-vertex, the 
recent upper bound on the electron Yukawa coupling 
obtained from Higgs decay  (Altmannshofer, Brod & 
Schmaltz, 2015)

       Andres Vasquez 17/04/2019       18/20

Higgs coupling to electron (will improve)

Fine tuning of the mass

Top pair production

Durieux, Perello, Vos & Zhang, 2018

cet

Λ
≲ 10−2 − 10−3 TeV−2



Summary



C. Degrande

• HH production is small in the SM 

• 2 operators are relevant for ee > HH 

• HH at lepton colliders:  

• They will be further constrained by ttbar, H

Summary

ceφ

Λ2
≲ 10−3TeV−2 cet

Λ2
≲ 10−1 − 10−2TeV−2


