

Institut de recherche en mathématique et physique Centre de Cosmologie, Physique des Particules et Phénoménologie

New physics in double Higgs production Celine Degrande

Plan

C. D., A. Tonero, R. Rosenfeld, Andres Vasquez, JHEP 1905 (2019) 020

- Introduction: HH
- SMEFT operators for HH
- Results
- Other constraints
- Summary

Introduction: double HH

HH at hadron colliders

Plehn, Spira & Zerwas, 1996

Stronger cancellation close to threshold

Li & Voloshin, 2013

Small in the SM = good for NP

Tree-level

$$\propto m_e \approx 0$$

Tree-level

(a)

(b)

$$\propto m_e \approx 0$$

correction to the electron Yukawa

= 0 by parity conservation

$$P = +1$$

Benchmark	Experiment	\sqrt{s} (GeV)	<i>L</i> (ab ⁻¹)	
1	FCC-ee	350	2.6	
2	CLIC	380	0.5	
3	ILC	500	4	
4	CLIC	1500	1.5	
5	CLIC	3000	3.0	

C. Degrande

SMEFT operators for HH

Indirect detection of NP

Assumption : NP scale >> energy probed in experiments

$$g - \frac{1}{p^2 - m^2} g$$

One assumption : $p^2 \ll m^2$

Ex : Fermi theory
$$-\frac{G_F}{Sqrt[2]}J^{\mu}J_{\mu}, \quad J_{\mu} = J_{\mu}^l + J_{\mu}^h, \quad J_{\mu}^l = \nu_l \gamma_{\mu} (1 - \gamma_5)l$$

 $\psi^2 \varphi^3$

Grzadkowski et al., 2010

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{C_i}{\Lambda^2} \mathcal{O}_i^6$$

	11		φ and φ D	ΨΨ	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(arphi^\daggerarphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC}\widetilde{G}_{\mu}^{A\nu}G_{\nu}^{B\rho}G_{\rho}^{C\mu}$	$Q_{\varphi\Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{arphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_p d_r \varphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$				
	$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$
$Q_{arphi G}$	$ \varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu} $	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi) (\bar{l}_{p} \gamma^{\mu} l_{r})$
$Q_{arphi\widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$ \varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu} $	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi\widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}_{\mu\nu}^{I}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi) (\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$
$Q_{arphi\widetilde{B}}$	$ \varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi)(\bar{u}_p \gamma^{\mu} u_r)$
$Q_{\varphi WB}$	$ \varphi^{\dagger} \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu} $	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger} \tau^I \varphi \widetilde{W}_{\mu\nu}^I B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

 φ^6 and $\varphi^4 D^2$

Tree-level

One-loop thanks to eeZ, evW, hZZ, hWW modification: Constrained by LEP/LHC

Table 2: Dimension-six operators other than the four-fermion ones.

Most operators do not contribute (Parity/ $\propto m_e \approx 0$)

						=
	$(\bar{L}L)(\bar{L}L)$	$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$		
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$	
$Q_{qq}^{(1)}$	$(\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$	
$Q_{lq}^{(1)}$	$(\bar{l}_p\gamma_\mu l_r)(\bar{q}_s\gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$	
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$	
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t)$	
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r)(\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$	
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{d}_s \gamma^\mu T^A d_t)$	
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-viol	lating		e^{+}
Q_{ledq}	$(ar{l}_p^j e_r) (ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^TCu_r^{\beta}\right]\left[(q_s^{\gamma j})^TCl_t^k\right]$			
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$			
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{\alpha j})^TCq_r^{\beta k}\right]\left[(q_s^{\gamma m})^TCl_t^n\right]$			
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk}(\bar{q}_s^k u_t)$	$Q_{qqq}^{(3)}$	$\varepsilon^{\alpha\beta\gamma}(\tau^I\varepsilon)_{jk}(\tau^I\varepsilon)_{mn}\left[(q_p^{\alpha j})^TCq_r^{\beta k}\right]\left[(q_s^{\gamma m})^TCl_t^n\right]$			e^{-}
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$	Q_{duu}	$\varepsilon^{\alpha\beta\gamma} \left[(d_p^{\alpha})^T C u_r^{\beta} \right] \left[(u_s^{\gamma})^T C e_t \right]$			

Table 3: Four-fermion operators.

Most operators do not contribute (Parity/ $\propto m_e \approx 0$)

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$	
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$	
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar{q}_p\gamma_\mu q_r)(ar{e}_s\gamma^\mu e_t)$	
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$	
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t)$	
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r)(\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$	
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{d}_s \gamma^\mu T^A d_t)$	
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-viol	e^+		
Q_{ledq}	$(ar{l}_p^j e_r) (ar{d}_s q_t^j)$	Q_{duq}	$ \varepsilon^{lphaeta\gamma} \varepsilon_{jk} \left[(d_p^{lpha}) \right] $			
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$			×
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[\left(q_{p}^{\alpha}\right)\right]$			
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk}(\bar{q}_s^k u_t)$	$Q_{qqq}^{(3)}$	$\varepsilon^{\alpha\beta\gamma}(\tau^I\varepsilon)_{jk}(\tau^I\varepsilon)_{mn}$	$\left \begin{array}{c} - \\ e^{-} \end{array} \right $		
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$	Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T ight]$			

 e^{-} t h

Table 3: Four-fermion operators.

$$\frac{c_{e\varphi}}{\Lambda^2} (\varphi^{\dagger} \varphi - \frac{v^2}{2}) \bar{l}_L \varphi e_R$$

$$\frac{c_{et}}{\Lambda^2}\epsilon_{ij}ar{l}_L^ie_Rar{q}_L^jt_R$$

Correction to the electron Yukawa

Results

Comments on the top loop

Results for future colliders

$$\chi^2\left(\sqrt{s}, \frac{c_{e\varphi}}{\Lambda^2}, \frac{c_{et}}{\Lambda^2}\right) = \frac{\left[\sigma^{SMEFT}\left(\sqrt{s}, \frac{c_{e\varphi}}{\Lambda^2}, \frac{c_{et}}{\Lambda^2}\right) - \sigma^{SM}\left(\sqrt{s}\right)\right]^2}{\delta\sigma^2}$$

$$\delta\sigma^2 = \delta\sigma_{\mathit{stat}}^2 + \delta\sigma_{\mathit{sys}}^2$$

$$\delta\sigma_{ extit{stat}} = \sqrt{\sigma^{ extit{SM}}/ extit{L}}$$

$$\delta\sigma_{stat} = \sqrt{\sigma^{SM}/L}$$
 $\delta\sigma_{sys} = \alpha\sigma^{SM}$ $(\alpha = 0.1)$

Ind. 95% CL

Benchmark	Experiment	\sqrt{s} (GeV)	<i>L</i> (ab ⁻¹)	$ c_{e\varphi}/\Lambda^2 (\text{TeV}^{-2})$	$ c_{et}/\Lambda^2 (\text{TeV}^{-2})$
1	FCC-ee	350	2.6	< 0.003 (< 0.004)	< 0.116 (< 0.146)
2	CLIC	380	0.5	< 0.004 (< 0.006)	< 0.143 (< 0.184)
3	ILC	500	4	< 0.003 (< 0.004)	< 0.068 (< 0.083)
4	CLIC	1500	1.5	< 0.003 (< 0.003)	< 0.027 (< 0.035)
5	CLIC	3000	3.0	< 0.002 (< 0.002)	< 0.012 (< 0.015)

$$k = 1 (k = 0.35)$$

bottom decay

$$k = BR(h \to f_1 \bar{f}_1) \times BR(h \to f_2 \bar{f}_2)$$

Results for future colliders

Benchmark	Experiment	\sqrt{s} (GeV)	<i>L</i> (ab ⁻¹)
1	FCC-ee	350	2.6
2	CLIC	380	0.5
3	ILC	500	4
4	CLIC	1500	1.5
5	CLIC	3000	3.0

95%CL, k=1

Other constraints

Other constraints

Higgs coupling to electron (will improve)

$$\left| -\frac{m_e}{v} + \frac{c_{e\varphi}(\mu)v^2}{\Lambda^2\sqrt{2}} - \frac{3}{(4\pi)^2} \frac{y_t}{\sqrt{2}} \frac{c_{et}}{\Lambda^2} (4m_t^2 - m_h^2) \left[f(m_h^2, m_t^2) + \log \frac{\mu^2}{m_t^2} \right] \right| \lesssim 600 \frac{m_e}{v}$$

Fine tuning of the mass

$$|\delta m_e| \lesssim m_e$$

$$\left| \frac{c_{et}}{\Lambda^2} \right| \lesssim \frac{8\pi^2}{3} \frac{m_e}{m_t^3} \simeq 2 \times 10^{-3} \text{TeV}^{-2}$$

Top pair production

$$\frac{c_{et}}{\Lambda} \lesssim 10^{-2} - 10^{-3} \text{ TeV}^{-2}$$

Durieux, Perello, Vos & Zhang, 2018

Summary

Summary

- HH production is small in the SM
- 2 operators are relevant for ee > HH
- HH at lepton colliders: $\frac{c_{e\phi}}{\Lambda^2} \lesssim 10^{-3} \text{TeV}^{-2}$ $\frac{c_{et}}{\Lambda^2} \lesssim 10^{-1} 10^{-2} \text{TeV}^{-2}$
- They will be further constrained by ttbar, H