

Assembly and First Test of the US-MDP Nb₃Sn Dipole Demonstrator (MDPCT1)

June 27, 2019

Alexander Zlobin US Magnet Development Program Fermi National Accelerator Laboratory

<u>FNAL</u>: I. Novitski, E. Barzi, J. Carmichael, G. Chlachidze, J. DiMarco, V.V. Kashikhin, S. Krave, C. Orozco, S. Stoynev, T. Strauss, M. Tartaglia, D. Turrioni, G. Velev, A. Rusy, S. Jonhson, J. Karambis, J. McQueary, L. Ruiz, E. Garcia

LBNL: S. Caspi, M. Juchno, M. Martchevskii

CERN: D. Schoerling, D. Tommasini

FEAC/UPATRAS: C. Kokkinos

US-MDP: G6 and TAC

This work was supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy and the US-MDP.

Program goals

- Demonstration of 15 T field level
 - Record Nb₃Sn dipole magnets:
 - D20 (LBNL, 1997): B_{max}=13.5 T @1.9K, 12.8 T @4.4K
 - HD2 (LBNL, 2008): B_{max}=13.8 T @4.5K
 - FRESCA2 (CERN, 2018): B_{max}=14.6 T @1.9K, 13.9 T @4.5K
- Study and optimization of
 - \circ magnet quench performance and mechanics
 - \circ quench protection
 - \circ field quality
- The development and test of the 15 T dipole demonstrator is a key milestone of the US Magnet Development Program
 o coordinated with EuroCirCol program and supported by CERN

15 T Dipole design

- Coil (V.V. Kashikhin et al.):
 - 60-mm aperture, 4-layer graded coil
 - W_{sc} = 68 kg/m/aperture

- Innovative mechanical structure (I. Novitski et al.):
 - Thin StSt coil-yoke spacer
 - Vertically split iron laminations
 - Aluminum I-clamps
 - 12-mm thick StSt skin
 - Thick end plates and StSt rods
 - Cold mass OD<610 mm

- L1-L2: 28 strands, 1 mm RRP150/169
- L3-L4: 40 strands, 0.7 mm RRP108/127
- 0.025 mm x 11 mm SS core
- Insulation: E-glass tape

RRP-150/169 1 mm

Magnet conductor limit

Magnet conductor limit for the wire J_c(12T,4.2K)~2.65 kA/mm²

- B_{ap}=15.3T @4.5K B_{ap}=16.7T @1.9K •

Magnet mechanical limit

(APO)

0052-07

Limit 150 MPa

4K+15T

590E+07

- Magnet <u>design limit</u> is determined by the coil maximum stress and the pole turn separation from poles
 - independent FNAL and FEAC analysis

Mechanical limit for this design is 15 T!

TAC members:

• Andy Lankford (UCI, Chair), Giorgio Apollinari (Fermilab), Joe Minervini (MIT), Mark Palmer (BNL), Davide Tommasini (CERN), Akira Yamamoto (KEK & CERN)

Report of the Technical Advisory Committee for the U.S. Magnet Development Program *February 22, 2019*

Recommendations:

- Maintain as the priority for the cos-theta approach using the clamped mechanical structural design to realize a field of about 14 T, with special attention to mechanical stress management and control.
- Continue with demonstration of 15 T cos-theta performance only after the review of the 14 T magnet test results and feedback from the international workshop.

Target coil prestress for the first assembly

Conservative pre-stress:

S_{max} at all steps <150 MPa

Inner Pole at 13T Gap=0.003mm Inner Pole at 14T Gap=0.037mm

Courtesy I. Novitski

Coil fabrication, measurements and instrumentation

Coil winding and curing using ceramic binder

Coil reaction

Coil lead splicing and epoxy impregnation

Coil size control, accuracy ~10 microns

Coil instrumentation

- Coil fabrication, measurement and instrumentation time ~3 months
 - IL spare coil was wound, reacted and impregnated
 - OL spare coil the cable and coil parts are available

Witness sample data

Courtesy E. Barzi and D. Turrioni

- HT cycle optimized for the 28-starnd and 40-strand cable
- Witness sample data are close to the target I_c
- Good reproducibility of witness sample data for IL and OL coils
- Magnet short sample limit: 15.16 T @4.5K and 16.84 T @1.9K

Coil interfaces analysis and optimization

Coil assembly and preload scheme

Coil assembly, yoking and skinning

Magnet transportation and test preparation

Instrumentation

- Voltage taps on all coil layers
 - one dead and one inactive (both by-passed by using longer segments)
- Strain Gauges
 - skin gauges: OK
 - bullet gauges: two (on different bullets) dead
 - pole gauges: layer 3 and 4 all gone or inactive, layer 1 are OK
 - coil gauges: one switched off (problems during ramp up), another off for technical reasons (could be recovered if needed)
- Quench antennas
 - only sensitive to quenches in Layer 1 (didn't happen yet)
- Acoustic sensors
 - not useful data (very noisy signal)

Magnet training

- No quenches in coil 3
- OL quenches are equally distributed between coil 4 and coil 5
- Quenches are in both layers 3 and 4 mostly in the LE
- Highest achieved quench current 9758 A at 4.5 K
- Magnet quenching was stopped to avoid coil damage

Magnetic field measurements

Low-order field harmonics

Office of

Science

DEPARTMENT OF

V.V. Kashikhin and A.V. Zlobin, NAPAC2016

Good correlation of measurements
with theoretical predictions

TF analysis

Courtesy I. Novitski

Courtesy V.V. Kashikhin

- 2D analysis has been updated based on the actual yoke material properties and the final magnet geometry
- 3D calculations are in progress
- Measurements have been verified with NMR probes (provided by GMW)

U.S. DEPARTMENT OF Office of Science

Maximum field achieved

- First quenches above 11 T
- Maximum bore field at 4.5 K
 - o measured 14.10±0.04 T
 - calculated (COMSOL, V.V. Kashikhin) 14.112 T

- 15 T cos-theta dipole is a challenging and important MDP milestone to understand limits of Nb₃Sn accelerator magnet technology
 - integrated international effort with EuroCirCol
- 1-m long 15 T dipole model (MDPCT1) has been developed, fabricated and first tested at Fermilab (June 2019)
- The goals of the first test have been achieved
 - B_{max} = 14.10±0.04 T at 1.9 and 4.5 K <u>record field at 4.5 K for accelerator</u> <u>magnets!</u>
 - graded 4-layer coil design, innovative support structure and magnet fabricated procedure tested
- Next steps
 - Magnet re-assembly
 - coil pre-load increase to the level sufficient to achieve the goal of 15 T
 - improve instrumentation
 - $\,\circ\,$ Magnet second test in the fall of 2019

