

## RF performances of superconducting coatings on copper for the FCC study



M. Arzeo, S. Aull, E. A. Ilyina, S. Fernandez, G. J. Rosaz, A. Myazaki, A.-M. Valente-Feliciano, M. Bonura, C. Senatore and W. Venturini Delsolaro





FCC week 2019
Brussels



"A well-focused R&D programme on Nb thin-film coated Cu cavities could decrease the surface resistance at high RF fields by factors of two to three..."

See FCC conceptual design report @ fcc.web.cern.ch







## **Energetic condensation techniques are** explored

#### **Electron Cyclotron Resonance**





#### **High Power Impulse Magnetron Sputtering**





See A.-M. Valente-Feliciano, et al. Supercond. Sci. Technol. 29 (2016)



## RF performances characterized via the quadrupole resonator



Calorimetric technique

$$R_{s} = \frac{2\mu_{0}^{2}(P_{DC1} - P_{DC2})}{\int_{sample} |\overrightarrow{B}|^{2} dS}$$



## The best Nb/Cu samples in the last two years





## Now, let's play the game...





## Can we replicate on a cavity?



- **Bulk Nb**
- AM-SL2.1 (HiPIMS, 2019)
- M 5.1
- (HiPIMS -100 V, 2016)
  - M 5.5
  - (HiPIMS -50 V, 2017)
- M 5.3
- (HiPIMS -25 V, 2017)
- M 1.7
- (HiPIMS floating, 2017)
  - H 11.1
- (HiPIMS -25 V, 2017)
  - N 1.1
- (HiPIMS, 2019)

1.3 GHz elliptical cavities

Better substrates are needed



## Conclusions and Outlook



**Both HiPIMS and ECR** high quality coatings



**Both techniques mitigate** the Q-slope



Results are still not fully reproducible on cavities







# "The A15 compounds have the potential to outperform niobium..."



See FCC conceptual design report @ fcc.web.cern.ch



## Two coating procedures by magnetron sputtering

#### reacted after coating



#### **Main coating parameters:**

Coating gas: Ar or Kr

Coating pressures:

7x10<sup>-4</sup> mbar ... 5x10<sup>-2</sup> mbar

Composition:

Sn 20 At% to 27 At%

#### reacted during coating



#### Compulsory Annealing

| Annealing temperatures | 600 - 800°C |
|------------------------|-------------|
| Annealing time         | 24 h 72 h   |

For more details see: E. A. Ilyina, et al. Supercond. Sci. Technol., 32 (2019)

#### Alternative Annealing

| Coating temperatures             | 600 - 735°C |
|----------------------------------|-------------|
| Alternative Additional Annealing | 24 h 72 h   |



## A15 phase with Tc as bulk







For more details see: E. A. Ilyina, et al. Supercond. Sci. Technol., **32** (2019)

[1] A. Godeke, Supercond. Sci. Technol., 19 (2006)



## First RF results are promising





Nb<sub>3</sub>Sn/Nb data taken from S. Keckert et al., SRF2017



## **Pronounced Q-slope**





The slope increases with both temperature and frequency



## **Conclusions and Outlook**



## Good quality of the Nb<sub>3</sub>Sn coatings



## Low residual resistance



New samples are ready for RF tests



## **Conclusions and Outlook**



## Good quality of the Nb<sub>3</sub>Sn coatings



## Low residual resistance



## New samples are ready for RF tests

There are reasons to be optimistic





## Nb/Cu vs bulk Nb for FCC-ee





Courtesy of S. Aull, FCC week 2017

S. Aull, and co. *FCC-DRAFT-TECH-2017-002* (2017)











