## Status of the SuShi septum project

M. Novák, D. Barna - Wigner Research Centre for Physics

M. Atanasov, J. Borburgh, G. Kirby - CERN



#### Introduction



- LHC uses Lambertson septum
- Conventional technologies
- Reliable
- Limited ~ 1.5 T
- For FCC it would be too long
- High energy consumption
- Goals:
  - Demonstrator prototype
  - Septum with 3+ T field
  - <25 mm apparent thickness</li>
  - CCT magnet with a bulk
     sc. shield inside of it

## 2D optimization

- Simulate the field around the half-moon shaped shield (perfect diamagnet) for J<sub>z</sub>=cos(nϑ) (n=1..6) using COMSOL
- 2. Sample field around GFR, calculate multipole composition for each n
- 3. Invert the problem (linear algebra) to get weights J<sub>n</sub> of multipole current

$$J_z(\vartheta) = \sum J_n * \cos(n\vartheta)$$

which gives pure dipole field



Review of Scientific Instruments, 90 (2019) 053302, doi: <u>10.1063/1.5096020</u>

## 3D geometry of coils from 2D optimization



Study magnet parameters, field pattern etc. as a function of the transfer function T

## Design goals

- Keep in mind: proof-of-concept prototype for a shield+magnet septum, and not a CCT-magnet R&D project →
- CCT magnet as standard as possible, use same parameters, concepts (even test hardware) from the HL-LHC CCT corrector project, as much as possible
- Key element: shield!
- Reach 3.2 Tesla central field
- Over a plateau of at least 10 cm
   (to measure field homogeneity, required: ±1.5%)
- 80 cm device/shield length (gives feasible parameters, see later)
- **105 mm bore diameter** (= hi-lumi CCT corrector)
- Do not try to maximize ∫ B dz (it will only be important in a ring)
- If the shield works → experts can tune up the magnet to maximize ∫ B dz

#### 3D simulation



## Min. 10 cm central plateau of B<sub>v</sub>



- T = 0.00675 T/A gives> 10 cm plateau
- $I_0 = 475 \text{ A}$ for  $B_0 = 3.2 \text{ T}$

Geometry fixed

## Max |B| in coils for $B_0=3.2$ T



 $B_{peak} = 3.52 \text{ T in the coils}$ 

Reason: for low T the coils "straighten up", producing more B<sub>z</sub> between coils



#### Choice of SC wire



#### Inductance



$$L = \int B \cdot H / I^2 = 142 \text{ mH}$$

Compare to hi-lumi CCT corrector prototypes:

- 0.5 m: 102 mH
- 2.2 m: 820 mH

## Quench protection

Goal: try with simple external damp resistor, as for HL-LHC CCT corrector magnets [IEEE TAS 28, 4004806]

- Set max voltage: U<sub>0</sub>=400 V
- Damp resistor: R<sub>d</sub>=U<sub>0</sub>/I<sub>0</sub>=843 mΩ
- $\tau = 168 \text{ ms}$
- $\int I^2 dt = 18885 A^2 s$
- T<sub>hotspot</sub> ≈ 160 K
- Overestimation
  - Neglects quench back
  - Shield acting as a quench fuse (please ask...)





- Model the 3D coil (only)
- Using 'Coil' feature, calculate the current distribution in it
- Create 2D slice of the coil, and build the rest of the geometry (formers, etc)
- A-formulation in 2D → Magnetic fields, currents
- The shield is modelled with Campbell's model
- Multibody mechanics simulation
- Prescribed displacement constraint In x=0 and y=0 planes to eliminate rigid body modes
- The applied loads are the Lorentz forces





Arrow Surface: Displacement field Arrow Surface: Displacement field Surface: Total displacement (m)



- Vertically asymmetric deformation
- Right support element pushes the shield against the former
  - Reduces the possibility of wobbling
- Forces acting on the shield:
  - $F_x = -\int B_y J_z dA = -1.45e5 N/m$
  - $F_y = \int B_x^* J_z dA = 321 \text{ N/m}$ (numerical error, should be 0)



- Misalignments of the shield cause distortion in the field pattern
  - x component of B appears
  - $\circ$  B<sub>x</sub> ~ tan(a) ~ 40 mT for 1°
  - The requirements on field quality determine the assembly precision
- Torque on the shield
  - $\circ$   $\tau_z = -235.19 (N*m)/m for 1°$
- Even for 1° it is quite large
- Luckily, stabilizing

## MgB<sub>2</sub> shield

- Tubular MgB<sub>2</sub>: shielded 2.75 T with a thickness of 8.3 mm
   [To appear in IEEE Trans. Appl. Supercond. <a href="https://doi.org/10.1109/TASC.2019.2920359">https://doi.org/10.1109/TASC.2019.2920359</a>]
- Worse than NbTi/Cu, but can be manufactured quickly
- Half-moon shaped shield ordered in May 2019
- To be tested this year, in the hi-lumi CCT prototype

#### NbTi/Cu multilayer shield

- Excellent performance (no flux jumps, can be demagnetized, 3 T shielded by 3.2 mm thickness)
  - IEEE Transactions in Applied Superconductivity 29 (2019), 4900108
- Best candidate so far
- Expensive, availability unclear even on short term
- Material R&D is explicitly out-of-scope for FCC project
- → Collaboration with the University of Miskolc started (unofficial yet) <a href="http://www2.mak.uni-miskolc.hu/en/">http://www2.mak.uni-miskolc.hu/en/</a>
  - von Roll experimental rolling mill
  - ovens for hot rolling
  - sophisticated material characterization (XRD for texture analysis and residual stress measurement, pole figures, Scanning Electron Microscopy, EDXS, etc.)

## NbTi/Cu multilayer rolling @ Miskolc

(Infrastructure snapshots)



Robotized texture measurements



## NbTi/Cu multilayer - first rolling tests

Single sequence: Cu-Nb-NbTi-Nb-Cu

Assembled in a Cu cassette in Argon, closed by a 70-ton press

Good metallic bond, no traces of oxygen.









#### Infrastructure



Vacuum epoxy impregnation system, winding machine being prepared



#### Conclusions

- Most of the pre-prototype studies progress according to schedule
  - Detailed quench simulation still a TODO
- The first measurement with the actual half-moon shaped shield in a "regular"
   CCT magnet (hi-lumi corrector prototype) is on its way, hopefully will be performed until the end of this year
- The first rolling experiments were successful
- The manufacturing of the magnet expected to start next year

## Acknowledgements

- Akira Yamamoto, Márta Bajkó, Glyn Kirby, Juan Carlos Perez, Luca Bottura, Matthias Mentink, Lorenzo Bortot, SM18, Carlo Petrone, Ikou Itoh
- Aries-2 (grant agreement # 730871)
- Hungarian National Research, Development and Innovation Office under grant #K124945
- János Bolyai scholarship

# Backup slides

#### References

- Basic idea: "High field septum magnet using a superconducting shield for the Future Circular Collider" - Phys. Rev. Accel. Beams 20, 041002 (2017)
- First experimental tests: <u>Talk at FCC Week, Berlin, June 1st, 2017, 13:48</u>
- CCT+SuShi concept & exp. results: Talk presented at FCC Week 2018, 09-13 April, Amsterdam
- NbTi/Cu shield test results: IEEE Transactions in Applied Superconductivity 29 (2019), 4900108
- MgB2 shield test results: IEEE TAS early access, 10.1109/TASC.2019.2920359
- CCT 2D geometry optimization: Review of Scientific Instruments, 90 (2019) 053302, doi: 10.1063/1.5096020

#### Quench protection - extra

- Field pattern around the shield is quasi-stable
- Quench will induce eddy currents in the shield, causing flux jump
- Reorganization of the full field pattern
- Induces currents in the formers and windings
- Helps to quench the windings
- Shield is acting as a kind of "quench fuse"

## Project goal

- FCC-hh extraction septum magnet demonstrator prototype
- > 3 Tesla field
- < 25 mm apparent septum thickness</li>
- Concept: canted-cosine-theta (CCT) magnet with a superconducting shield

#### Project history:

- Successful proof-of-concept experiments:
  - MgB<sub>2</sub> shield 2.75 Tesla with 8.3 mm wall thickness flux jumps after first cycle
  - NbTi/Nb/Cu multilayer shield 3 Tesla with 3.2 mm wall thickness no flux jumps
- FCC Week 2018: presentation of the concept of the complete device (CCT-like magnet & shield)
- 2019 March: CERN-Wigner collaboration agreement signed to construct a demonstrator prototype

#### Project overview - milestones

- 2019 Dec: test a half-moon shaped MgB<sub>2</sub> shield in Hi-Lumi CCT magnet prototype (cheap, gain experience before constructing a SC magnet)
- 2020 March: CCT magnet design report
- 2020 June: CCT magnet prototype
- 2020 July: NbTi/Cu shield design report
- 2020 October: NbTi/Cu shield
- 2021 July: tests of MgB<sub>2</sub> and NbTi/Cu shields in magnet

Design, simulation & construction @ Wigner RCP
With supervision/help from CERN
CCT construction training is foreseen @ CERN for Wigner personnel