

Challenges for τ polarisation: LEP \rightarrow FCC-ee

Manuella G. Vincter (Carleton University, Ottawa, Canada)

- LEP@CERN: a trip down memory lane (ADLO)
- Asymmetries with $e^+e^- \rightarrow \tau^+\tau^-$ at LEP-I
 - Relation to SM couplings/Weinberg angle
 - Radiative corrections
 - τ decays and kinematic variables
 - Measured asymmetries and systematics

Interspersed thoughts about τ polarisation at FCC-ee

ADLO@LEP ALEPH (A), DELPHI (D), L3 (L), OPAL (O)

- LEP (1989-2000) e⁺e⁻ machine at Z pole and at W⁺W⁻
- Focus on LEP-I: at its best, 1000 Z/hour recorded by each expt (17M Z total)! Machine energy was known to ~2 MeV.

LEP-I (1989-1995): around the Z pole (~200pb⁻¹)

Year	Centre-of-mass	Integrated		$ m Z ightarrow \ell^+\ell^- \ x10^3$				
	energy range	luminosity	Year	А	D	L	O	LEP
	[GeV]	$[pb^{-1}]$	1990/91	53	36	39	58	186
1989	88.2 - 94.2	1.7	1992	77	70	59	88	294
1990	88.2 - 94.2	8.6	1993	78	75	64	79	296
1991	88.5 - 93.7	18.9	1994	202	137	127	191	657
1992	91.3	28.6	1995	90	66	54	81	291
1993	89.4, 91.2, 93.0	40.0	Total	500	384	343	497	1724
1994	91.2	64.5		'				
1995	89.4, 91.3, 93.0	39.8						

What happens near the Z pole: $e^+e^- \rightarrow \tau^+\tau^-...$

- γ Z interference ~ 10^{-3} x smaller than Z exchange (= 0 at the mass peak)
- The neutral weak force couples unequally to left-handed and right-handed fermions
 - → parity violation

$$\frac{d\sigma}{d\cos\theta} = A (1 + \cos^2\theta) + B \cos\theta$$

manifestation of the parity violation of the weak interaction

The three types of asymmetries*

 A^{FB} : forward (cos $\theta > 0$) – backward (cos $\theta < 0$) scattering

$$A^{FB} = \frac{\int_0^1 \frac{d\sigma}{d\cos\theta} d\cos\theta - \int_{-1}^0 \frac{d\sigma}{d\cos\theta} d\cos\theta}{\int_0^1 \frac{d\sigma}{d\cos\theta} d\cos\theta + \int_{-1}^0 \frac{d\sigma}{d\cos\theta} d\cos\theta}$$

 P_{τ} : polarisation of the Z induces an angular dependence on the polarisation of the $\boldsymbol{\tau}$

$$P_{\tau}(\cos\theta) = \frac{\frac{d\sigma}{d\cos\theta}\Big|_{R} - \frac{d\sigma}{d\cos\theta}\Big|_{L}}{\frac{d\sigma}{d\cos\theta}\Big|_{R} + \frac{d\sigma}{d\cos\theta}\Big|_{L}} \qquad \langle \mathbf{P}_{\tau} \rangle = \frac{\sigma_{R} - \sigma_{L}}{\sigma_{R} + \sigma_{L}}$$

$$P_{\tau^{-}} = -P_{\tau^{+}} = P_{\tau^{-}}$$

$$\langle \mathrm{P}_{ au}
angle = rac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$$

$$P_{\tau^-} = -P_{\tau^+} = P_{\tau}$$

A_{nol} : forward-backward asymmetry of the polarisation

$$\mathbf{A}_{\text{pol}}^{\text{FB}} = \frac{\left[\int_{0}^{1} \frac{d\sigma}{d\cos\theta} \Big|_{R} - \int_{0}^{1} \frac{d\sigma}{d\cos\theta} \Big|_{L}\right] - \left[\int_{-1}^{0} \frac{d\sigma}{d\cos\theta} \Big|_{R} - \int_{-1}^{0} \frac{d\sigma}{d\cos\theta} \Big|_{L}\right]}{\int_{0}^{1} \frac{d\sigma}{d\cos\theta} \Big|_{R} + \int_{0}^{1} \frac{d\sigma}{d\cos\theta} \Big|_{L} + \int_{-1}^{0} \frac{d\sigma}{d\cos\theta} \Big|_{R} + \int_{-1}^{0} \frac{d\sigma}{d\cos\theta} \Big|_{L}}$$

$$= \frac{[\mathbf{a} - \mathbf{b}] - [\mathbf{d} - \mathbf{c}]}{\mathbf{Sum}}$$

^{*}Neglecting radiative corrections and the contribution from photon exchange, at $\sqrt{s} = M_7$

Relating three asymmetries to SM: couplings and Weinberg angle

Asymmetries related to vector, axial-vector couplings:

$$egin{aligned} \mathrm{A^{FB}} &pprox rac{3}{4} \mathrm{A_e A_ au} \ & \langle \mathrm{P_ au}
angle &pprox -\mathrm{A_ au} \ & \mathrm{A^{FB}_{pol}} pprox -rac{3}{4} \mathrm{A_e}. \end{aligned}$$

$$egin{aligned} \mathbf{A^{FB}} &pprox rac{3}{4} \mathbf{A}_e \mathbf{A}_{ au} \end{aligned} \qquad egin{aligned} \mathbf{A}_\ell &\equiv rac{2g_v^\ell g_a^\ell}{\left(g_v^{\ell^2} + g_a^{\ell^2}
ight)} \ &\langle \mathbf{P}_ au
angle &pprox -\mathbf{A}_ au \end{aligned} \qquad egin{aligned} \mathsf{Near} \ \mathsf{Z} \ \mathsf{pole} \colon \ \mathbf{A}_\ell &pprox 2rac{g_v^\ell}{g_a^\ell} \ & \\ \mathbf{A_{pol}^{FB}} &pprox -rac{3}{4} \mathbf{A}_e . \end{aligned} \qquad egin{aligned} rac{g_v^\ell}{g_a^\ell} &= 1 - 4 \sin^2 \theta_W \end{aligned}$$

$$P_{ au}(\cos heta)pprox -\left[rac{\mathrm{A}_{ au}(1+\cos^2 heta)+2\mathrm{A}_e\cos heta}{1+\cos^2 heta+rac{8}{3}\mathrm{A^{FB}}\cos heta}
ight]$$

- Sensitivity to $\sin^2\theta_W$ (assuming lepton universality, $\sin^2\theta_W = 0.23$)
 - $\delta A^{FB} \approx -1.9 \delta \sin^2 \theta_W$
 - $\delta < P_{\tau} > \approx -7.8 \delta \sin^2 \theta_{W}$
 - $\delta A_{\text{pol}}^{\text{FB}} \approx -5.5 \ \delta \sin^2 \theta_{\text{W}}$

 $\langle P_{\tau} \rangle$, A_{nol}^{FB} significant sensitivity to Weinberg angle.

Radiative corrections...

- If only pure Z exchange, $\langle P_{\tau} \rangle$ and A_{pol}^{FB} simply related to A_{τ} and A_{e}
- Photonic corrections ~30% effect on cross section, but much smaller on asymmetries. Well understood.
- At LEP, ZFITTER used correct for contributions from γ propagator, γ -Z interference and radiative corrections for initial state and final state radiation
 - ~ 0.005 correction to $\langle P_{\tau} \rangle$, $A_{\text{nol}}^{\text{FB}}$
 - LEP EWWG: "effects are theoretically well defined and have been calculated to more than adequate precision for the measurement at hand... ZFITTER error of ±0.0002 is included as a common systematic error in the LEP combination"
 - \rightarrow Will not be sufficient for FCC-ee measurement of τ polarisation! May need a lot of work to get there.
- Non-photonic corrections: higher-order processes affect the strength of γ and Z exchange contributions. Important vertex corrections: heavy bosons are exchanged between final and initial state charged particles.
 - modify the Born-level cross section by replacing
 - fine structure constant α by an s-dependent coupling,
 - Z width, Γ_7 , by an s-dependent width.
 - vector and axial-vector couplings by s (and t) dependent effective couplings
 - → effective weak mixing angle

$$g_v^f
ightarrow \hat{g}_v^f (s$$

$$g_v^f
ightarrow \hat{g}_v^f(s) \qquad \qquad g_a^f
ightarrow \hat{g}_a^f(s).$$

τ polarisation from decay products

< $P_{\tau}>$, A_{pol}^{FB} require knowledge of the helicity of the τ : extracted from kinematic variables of τ decay products

	BR (%)	Observable	Max sensitivity (with 3D τ dir)	"Ideal weight" (with 3D τ dir)
$\tau \rightarrow e \nu \overline{\nu}$	18	$X_e = E_e / E_\tau$	0.27	0.07
$\tau \rightarrow \mu \nu \overline{\nu}$	17	$X_{\mu} = E_{\mu}/E_{\tau}$	0.27	0.07
$\tau \rightarrow \pi \nu$	12	$X_{\pi} = E_{\pi}/E_{\tau}$	0.58	0.22
τ→ρν	25	ω_{ρ}	0.58	0.47
$ \begin{array}{c} \tau \rightarrow a_1 v \\ (a_1 \rightarrow \pi^{\pm} \pi^{+} \pi^{-}) \end{array} $	9	ω_{a1}	0.58	0.17
$(a_1 \rightarrow \pi^{\pm} \pi^{+} \pi^{-})$				

Selection efficiencies etc.. Will impact these weights

The case of the ρ (vector meson) $\rho \rightarrow \pi \pi^{0}$

- Comes longitudinally and transversely polarised
- Sensitivity diminished unless spin analyse ρ : cos θ^* , ψ
- "Optimal variable" ∞ differential decay with of \pm helicity τ : ω_{ρ} Same story for a_1 but more complicated! Axial-vector meson.

7

Kinematic observables

Without selection requirements: the observables in MC

• With selection requirements: Fit linear combinations of \pm helicity using the observables in MC (KORALZ+TAUOLA)

Measured P_τ and LEP EWWG extraction of A_τ and A_e

Value ± stat.± syst.

Experiment	${\cal A}_{ au}$	\mathcal{A}_{e}
ALEPH	$0.1451 \pm 0.0052 \pm 0.0029$	$0.1504 \pm 0.0068 \pm 0.0008$
DELPHI	$0.1359 \pm 0.0079 \pm 0.0055$	$0.1382 \pm 0.0116 \pm 0.0005$
L3	$0.1476 \pm 0.0088 \pm 0.0062$	$0.1678 \pm 0.0127 \pm 0.0030$
OPAL	$0.1456 \pm 0.0076 \pm 0.0057$	$0.1454 \pm 0.0108 \pm 0.0036$
LEP	$0.1439 \pm 0.0035 \pm 0.0026$	$0.1498 \pm 0.0048 \pm 0.0009$

- Some systematic uncert at LEP related to the sample size
- Statistical uncertainty at FCC-ee on A_{τ} and A_{e} <0.00002 (~10⁵ x more Z than at LEP i.e. $\sqrt{10^{5}}$ = 300 improvement)
- → FCC-ee: will have negligible statistical uncertainties. It will be all about controlling systematics!
- → FCC-ee: need to perform simultaneous fit across all decay modes with all systematic errors.
 - → Modes with higher syst uncert will feed into those with better controlled syst uncert as backgrounds.

Common systematic uncertainties on LEP measurements

LEP EWWG, Phys. Rept.	ALEPH		DELPHI		L3		OPAL	
427, 257-454 (2006)	$\delta \mathcal{A}_{ au}$	$\delta \mathcal{A}_{\mathrm{e}}$	δA_{τ}	$\delta \mathcal{A}_{\mathrm{e}}$	$\delta \mathcal{A}_{ au}$	$\delta \mathcal{A}_{\mathrm{e}}$	δA_{τ}	$\delta \mathcal{A}_{\mathrm{e}}$
ZFITTER	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
τ branching fractions	0.0003	0.0000	0.0016	0.0000	0.0007	0.0012	0.0011	0.0003
two-photon bg	0.0000	0.0000	0.0005	0.0000	0.0007	0.0000	0.0000	0.0000
had. decay model	0.0012	0.0008	0.0010	0.0000	0.0010	0.0001	0.0025	0.0005

τ branching ratios (BR)	δ BR (%) LEP	δ BR (%) PDG18
$\tau \rightarrow \pi \nu$	0.13	0.05
τ→ρν	0.15	0.09
$\tau \rightarrow a_1 v (\pi^{\pm}\pi^{+}\pi^{-})$ $\tau \rightarrow a_1 v (\pi 2\pi^{0})$	0.11 0.14	0.05 0.10

Uncertainties reduced by ~1.5-2.5

- τ BR measurement uncertainties @LEP dominated by stats or stat≈syst. Syst sometimes dominated by sample size.
 - Must be measured again at FCC-ee with negligible stat uncertainties. Important to control the systematics!
 - At Belle-II? Improve modes with K & $\pi^{o} \rightarrow$ May improve TAUOLA & treatment of radiation in τ decays
- Significant modeling uncertainties in $\tau \rightarrow a_1 \nu$ either directly as signal or as part of the $\tau \rightarrow \rho \nu$ background
 - Mass & width of a_1 , $\tau \rightarrow a_1 v$ decays, modeling of $\tau \rightarrow 3\pi \ge 1\pi^0 v$

- Are our MC tools good enough e.g. τ decay MC?
- At LEP, could ignore entanglement of τ pairs (KORALZ MC gave helicity states). Might not be good enough for FCC-ee.

 \rightarrow May all be an issue for FCC-ee measurement of τ polarisation unless better understood!

Experimental systematic uncertainties

on LEP measurements

FCC-ee: is shower simulation ready for the required precision?

An example:

- EM calorimetry a limiting factor in the most sensitive decay modes at LEP
- FCC-ee would need
 - exceptionally good (fine-grained, precisely calibrated) calorimeter for γ , π^o reconstruction coupled to excellent detector simulation to model for e.g. shower shapes that are input to the τ decay spectra (and a lot of compute power to generate that many events! MC stats a significant uncert at LEP!)
- Too simplistic to just look at dominant experimental uncertainties at LEP and think to attack the major ones.
 - Improvements needed on all fronts to take advantage of stat precision!

Quantity M. Dam	SciPost Phys. Proc. 1, 041 (201	LEP	FCC-ee	
Impact parameter	$\sigma_d = a \oplus \frac{b \cdot \text{GeV}}{p_{\text{T}} \sin^{2/3} \theta}$		20 μm	3 μm
resolution			65 μm	15 μm
Momentum	$\frac{\sigma(p_{\mathrm{T}})}{p_{\mathrm{T}}} = \frac{a \cdot p_{\mathrm{T}}}{\mathrm{GeV}} \oplus b$		6×10^{-4}	2×10^{-5}
resolution			5×10^{-3}	1×10^{-3}
ECAL energy	$\frac{\sigma(E)}{\sigma(E)} = \frac{a}{\sigma(E)} \oplus b$	а	0.2	0.15
resolution	$E = \sqrt{E/\text{GeV}}$		0.01	0.01
ECAL transverse granularity			$15 \times 15 \text{ mrad}^2$	3 × 3 mrad ²

25x finer granularity

ALEPH, EPJC 20, 401-430 (2001) $A_{ au}$							
Source	ρ	3h	$h 2\pi^0$				
selection	0.01	-	-				
tracking	-	0.22	-				
ECAL scale	0.11	0.21	1.10				
PID	0.06	0.04	0.01				
misid.	-	-	-				
photon	0.24	0.37	0.22				
non- τ back.	0.08	0.05	0.18				
$\tau \ \mathrm{BR}$	0.04	0.10	0.26				
modelling	_	0.70	0.70				
MC stat	0.26	0.49	0.63				
TOTAL	0.38	1.00	1.52				
	-						

FCC-ee stat uncert on A_{τ} <0.002%

DELPHI

Conclusions

- Measurements of τ polarisation at LEP-I resulted in
 - $\sin^2 \theta_{\text{eff}}^{\text{lept}} = 0.23159 \pm 0.00041$
 - LEP+Tevatron+LHC: increased precision by a factor of ~3
- Challenge at FCC-ee: take full advantage of the stat precision!
 - Systematic uncertainties: both theoretical and experimental.
 - Prepare our tools to meet the challenge!

Note: Proposal to introduce polarised electron beams to the SuperKEKB e⁺e⁻ collider in order to measure the L-R asymmetry (like SLD). <u>FPCP2019</u> talk. Interested? Contact mroney@uvic.ca

Thanks for inviting me!

Manuella G. Vincter
(Carleton University, Canada)