

F2D2: the CEA Dipole Model for the FCC

F2D2 =

FCC Flared-ends Dipole Demonstrator

TM & © Lucasfilm Ltd. All Rights Reserved

CEA: E. Rochepault, V. Calvelli, M. Durante, H. Felice,
P. Mallon, P. Manil, J.F. Millot, G. Minier, J.M. Rifflet, L.
Ramos-Vieira
CERN: S. Izquierdo Bermudez, D. Tommasini, J. Fleiter 27/06/2019

STRONG INTERACTION WITH MAGNET PROGRAMS

CEA-CERN Program

ECC block-coil design [1-2]
 → 16T Conceptual design
 → Double aperture

 M. Segreti et al., "2D and 3D Design of the Block-coil Dipole Option for the Future Circular Collider", IEEE TAS, 2019
 See "Evolution of the block-coils design", this conference

- 2. F2D2 short model [3]
- \rightarrow Design/fabrication at CEA
- → Test at CERN
- → Single aperture
- \rightarrow Same coil design as ECC

[3] H. Felice et al. "F2D2: a Block-coil Short Model Dipole Toward FCC", IEEE TAS, 2019

CERN Programs

- SMC models
- → Technology development
- \rightarrow Conductor qualification
- ERMC/RMM models [4,5]
 → 16T magnet R&D

[4] S. Izquierdo et al., "Design of ERMC and RMM, the Base of the Nb3Sn 16 T Magnet Development at CERN", IEEE TAS, 2017
[5] See "Mechanical validation of the support structure of the eRMC and RMM, the 16-T R&D magnets for the FCC", this conference

EPFL-CERN Program

R&D on jonction technology [6-7]

[6] M. Kumar et al. "Preliminary Tests of Soldered and Diffusion-Bonded Splices Between Nb3Sn Rutherford Cables for Graded High-Field Accelerator Magnets", IEEE TAS, 2019
[7] See "Soldered and diffusion-bonded splices between Nb3Sn Rutherford cables for graded high-field accelerator magnets "", this conference

Spl4, 2D Mechanical

2D MAGNETIC DESIGN - FINALIZED

2. Harmonics representative of an accelerator magnet:

IRFU/DACM/LEAS

2D MECHANICAL DESIGN - FINALIZED

- 1. Provide coil-pole contact during nominal operation
- 2. Keep peak stress below (reversible) degradation limits

V4.8.14a

IRFU/DACM/LEAS

Cea

2D MAGNETO-MECHANICAL DESIGN - FINALIZED

2D MAGNETO-MECHANICAL DESIGN - FINALIZED

22 2D QUENCH PROTECTION - ONGOING

Protection Criteria (same as ECC):

- Every coil has a quench heater
- Detection delay = 20 ms
- Detection voltage = 5 mV
- Heater activation delay = 20 ms
- Max hot spot temperature = 350 K
- Max ΔV to ground = 1200 V

Model Hypotheses:

- Adiabatic Regime
- Cryocomp material database
- Magnetoresistivity included
- Transverse+longitudinal propagations considered

\rightarrow Magnetic, electrical, thermal models validated

Time=0 ms Iidated Iidated Case study : QH HF1+HF3 off

Quench Study using Comsol

F2D2 Project Status

IRFU/DACM/LEAS

PRELIMINARY CAD DESIGN - ONGOING

- Turn-by-turn coil model
 → External joints option
- \rightarrow Define path for cable exits

- 2. Coil components
- → Study concepts for external joints

IRFU/DACM/LEAS

- 3. Coil fabrication tooling
- \rightarrow Winding + reaction + splicing + impregnation
- \rightarrow Study compatibility with the fabrication process

WINDING MOCKUPS - FINALIZED

- 2 options for cable exits:
 - A: → Hard-way only → 1 layer jump shim
- Winding trials with SMC-11T cable:

B: \rightarrow Easy-way + Hard-way \rightarrow 2 layer jump shims

3D MAGNETIC DESIGN - FINALIZED

• Field in the layer jumps < 14 T

IRFU/DACM/LEAS

F2D2 Project Status

Page 10

Opera

3D MECHANICAL DESIGN - ONGOING

3D MECHANICAL DESIGN - ONGOING

IRFU/DACM/LEAS

3D MECHANICAL DESIGN - ONGOING

- Peak stress in coil and critical components within targets
- Next step: optimize longitudinal pre-load

- Goal: Demonstrate some key concepts for FCC block-coil dipoles:
 - → Grading between blocks
 - → Joint technology
- How?
 - → Relying on **proven technology**:
 - Block-coil
 - Bladders and keys structure
 - → Using state of the art conductors
 - → Developing engineering solutions for joints
 - 2 proposed solutions: internal and external
 - **External joints** selected to reduce the risks
 - Room to implement internal joints
- With today's state of the art conductors:
 - 15.5 T achievable at 14 % margin
 - ~18 T at short sample

- Status:
 - \rightarrow Integrated magnetic and mechanical design:
 - 2D magnetic + 2D mechanical completed
 - Protection ongoing
 - 3D magnetic completed, 3D mechanical ongoing
 - \rightarrow Engineering design:
 - Conceptual design of the coil ends and structure finalized
 - Technical solution validated with mock-ups

→ Challenging magnet!

- Future plans: preserve complexity and mitigate risks
 - 1. 1st stage: Proof-of-concept graded racetrack coils
 - \rightarrow Assembly and test in the F2D2 structure
 - 2. 2nd stage: F2D2 graded flared-end coils
 - \rightarrow Assembly and test of the final F2D2 magnet

BACKUP SLIDES

GRADING CONCEPT IN BLOCK-COILS

- 2D: "grading" needed for FCC [3]
- \rightarrow 2 cable sizes, same current
- \rightarrow Optimizing the current density
- \rightarrow Compact coils = less conductor

3D: need "joints" between the

1. Internal joints explored within

2. External joints explored at CEA

EPFL-CERN Program

cable grades

V1.1.1: FROM DOUBLE TO SINGLE APERTURE

IRFU/DACM/LEAS

MAIN DESIGN FEATURES

- Rectangular Block-coils
- Shell-based structure with Bladders&Keys
- Conductor with present performances

Nominal Current Inom	10378	А
Short sample current I _{ss}	12118	А
Bore field at I _{nom} (I _{ss})	15.54 (17.81)	Т
Peak Field at Inom (HF/LF)	16.20 / 11.85	Т
Peak Field at I _{ss} (HF/LF)	18.58 / 13.62	Т
Loadline Margin at Inom (HF/LF)	14.0 / 15.4	%
Stored Energy Inom	1.4	MJ/m
		-
Shell		

PARAMETER	Initial (Clément) V1		Updated (Jerôme)		Proposed v4		Unit
	HF	LF	HF	LF	HF	LF	
Strand diameter	1.1	0.7	1.1	0.7	1.1	0.7	mm
Number of strands	21	34	21	34	21	34	-
Unreacted width	12.47	12.47	12.310	12.579	12.579	12.579	mm
Unreacted thickness	1.94	1.23	1.969	1.253	1.969	1.253	mm
Reacted width	12.6	12.6	12.433	12.705	12.74	12.74	mm
Reacted thickness	2.00	1.27	2.028	1.291	2.06	1.31	mm
Copper/non-Copper ratio	0.8	2.0	0.8	2.0	0.8	2.0	-
Insulation thickness	0.15	0.15	0.15	0.15	0.15	0.15	mm
Bare cable compaction	11.8	12.0	10.5	10.5	10.5	10.5	%
Packing factor	85.4	88.2	85.9	86.6	84.9	87.5	%
Pitch angle	15	15	16.5	16.5	16.5	16.5	0
Transposition pitch	93	93	83.1	84.9	84.0	84.0	mm

$$Th_{target} = 2d(1 - comp)$$
$$W_{target} = \frac{Nd}{2\cos(PA)} + 0.24d$$
$$Packing = \frac{A_{strands}}{A_{bare\ cable}} = \frac{N\pi d^2}{4\cos(PA)Th_{bare}W_{bare}}$$

- Cable does not exist, baseline defined as:
 - 1. Thickness compaction after cabling: 9 to 12 % → baseline 10.5 %
 - 2. Expansion during reaction → ECC baseline: +3 % thickness / +1 % width
 - 3. Insulation \rightarrow ECC baseline: **150 µm**
- Strategy: fixed insulated reacted cable dimensions for the CAD design
 - Baseline cable with increased room for expansion
 - \rightarrow compensation of thicker cables
 - Insulation used to compensate thinner cables

		HF: 1.1mmx21 strands		LF: 0.7mmx34 strands		
Parameter	Unit	Thick.	Width	Thick.	Width	Source
Bare Virgin	μm	1969	12579	1253	12579	Cabling formulas
Insulation thick.	μm	150	150	150	150	ECC spec
Room for expansion during reaction	%	4.6	1.3	4.5	1.3	Bare reacted/ virgin
Insulated Reacted	mm	2.36	13.04	1.61	13.04	Rounded values

INTEGRATED 2D MAGNETIC AND MECHANICAL OPTIMIZATION

Fixed Ins. React. Th. for the CAD design

Ins Reacted $Th = Max Bare Virg Th \times (1 + Nom Exp) + 2 \times Nom Ins Th$

 $= 1.1 \times 2 \times (1 - 9\%) \times (1 + 3\%) + 2 \times 150 = 2362 \ \mu m \approx 2.36 \ mm$

- **3**rd **margin**: variable shims (insulated fiberglass)
- \rightarrow Fixed value in the nominal drawings
- → Free value in the <u>as-built drawings</u>

OZ

	Internal joints	External joints
Potential show-stoppers	 margin at high field room for operations (placing parts, splicing) 	 room for support room for operations (placing parts, splicing)
Clues that it can work	Low joint resistances in FRESCA samples and for EPFL joints	Concept similar to FRESCA2 endshoes
End harmonics	Compact ends possible	 Ends longer « naturally » more homogeneous
Axial loads	Behavior under Lorentz forces ? (detachment, motions)	Impact of pre-load ? (sharp wedges, relative motion)
Layer jumps	No LF layer jump	Need additional room for LF layer jump
IRFU/DACM/LEAS	F2D2 Proje	ect Status

1ST SOLUTION FOR F2D2: INTERNAL JOINTS

Joints

- Ideal solution for FCC
- Concepts:
 - Nb₃Sn-HF to Nb₃Sn-LF joint
 - Performed in an end-spacer
- Winding layout:
 - HF Double-layer pancakes + layer jump
 - LF single layer pancakes
- Status:
- Courtesy C. Lorin Joints under development by EPFL-SPC (See presentation "R&D on Nb₃Sn cable splices", P. Bruzzone and Poster "Preliminary investigations of Rutherford cable splicing techniques for high field accelerator magnets", M. Kumar)

HF block

- Several explored technical solutions
- Test on joints in Sultan
- Engineering implementation in coils remains an open question

→ High technical risk for F2D2 → High risk for the schedule

LF block

ALTERNATIVE SOLUTION FOR F2D2: EXTERNAL JOINTS

- · Decoupling grading and joints for the demonstrator
- Goal:
 - Minimize risks in coil fabrication
 - \rightarrow Each coil heat-treated and impregnated individually
 - \rightarrow Use a known joint technique outside of the coil
- CAD Geometric investigation ongoing:
 - Large footprint outside of the coil
 - Routing and supporting the cable

1 coil = 1 HF double pancake + 1 LF double pancake

1 pole = 2 coils

1. HF double-layer pancake with layer jump in the pole

2. Routing of the HF leads in an "inter-coil wedge" \rightarrow take advantage of flared ends

5. Heat treatment and impregnation of the coil

6. Joints Nb3Sn-NbTi outside the coil in the inter-coil wedges

7. Same concept for the other coils

8. Assembly of the coils

