F2D2: the CEA Dipole Model for the FCC

F2D2 = FCC Flared-ends Dipole Demonstrator

CERN: S. Izquierdo Bermudez, D. Tommasini, J. Fleiter
27/06/2019
STRONG INTERACTION WITH MAGNET PROGRAMS

CEA-CERN Program

1. ECC block-coil design [1-2]
 - 16T Conceptual design
 - Double aperture

2. F2D2 short model [3]
 - Design/fabrication at CEA
 - Test at CERN
 - Single aperture
 - Same coil design as ECC

CERN Programs

- SMC models
 - Technology development
 - Conductor qualification

- ERMC/RMM models [4,5]
 - 16T magnet R&D

 [5] See "Mechanical validation of the support structure of the eRMC and RMM, the 16-T R&D magnets for the FCC", this conference

EPFL-CERN Program

- R&D on junction technology [6-7]

 [7] See “Soldered and diffusion-bonded splices between Nb3Sn Rutherford cables for graded high-field accelerator magnets “”, this conference
1. **Maximize central field with margins:**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Current Inom</td>
<td>10378 A</td>
</tr>
<tr>
<td>Short sample current I_{ss}</td>
<td>12118 A</td>
</tr>
<tr>
<td>Bore field B_{y0} at Inom (I_{ss})</td>
<td>15.54 (17.81) T</td>
</tr>
<tr>
<td>Peak Field at Inom (HF/LF)</td>
<td>16.20 / 11.85 T</td>
</tr>
<tr>
<td>Peak Field at Iss (HF/LF)</td>
<td>18.58 / 13.62 T</td>
</tr>
<tr>
<td>Loadline Margin at Inom (HF/LF)</td>
<td>14.0 / 15.4 %</td>
</tr>
<tr>
<td>Stored Energy Inom</td>
<td>1.4 MJ/m</td>
</tr>
</tbody>
</table>

2. **Harmonics representative of an accelerator magnet:**

![Diagram showing harmonics and load lines]

- **Legend:**
 - ↑: Increment
 - ↓: Reduction
 - Shim Y-Pad
 - Shim X-Pad
 - Y-Pusher
 - Y-Shim Coil
 - Coil X-Position
 - Yoke radius

- **Load Lines:**
 - 1200 A/m² Today
 - 1500 A/m² Tomorrow

- **Harmonics:**
 - b_3, b_5, b_7, b_9
 - +/- 3 units
 - 15 units
1. Provide coil-pole contact during nominal operation
2. Keep peak stress below (reversible) degradation limits
Field map \(B(x,y) \)

Stress map \(S(x,y) \)

\(I_{SS\,\text{limit}} = I_c(B_{\text{max}}) \)

Traditional approach

\(S_{\text{limit}} = 150 \, \text{MPa} \)
2D MAGNETO-MECHANICAL DESIGN - FINALIZED

Field map $B(x,y)$

Stress map $S(x,y)$

$I_c(B,S)$ for a cable [8]

Map of I_c reduction $I_c(x,y)$

$S_{\text{limit}} = 150 \text{ MPa}$

$I_{\text{SS limit}} = I_c(B_{\text{max}})$

Stress induced current limit of the magnet [9] ≤ short sample

- **Trade-off on the pre-stress** (interference):
 - Minimize I_c reduction
 - Provide sufficient pre-stress

At nominal current:

- Negligible I_c reduction $\Rightarrow I_{\text{limit}} = 99\% I_{\text{ss}}$
- 100 % coil in contact with the post

[8] See “Electro-mechanical properties of Nb3Sn conductors for application to high-field magnets”, this conference
Protection Criteria (same as ECC):
- Every coil has a quench heater
- Detection delay = 20 ms
- Detection voltage = 5 mV
- Heater activation delay = 20 ms
- Max hot spot temperature = 350 K
- Max ΔV to ground = 1200 V

Model Hypotheses:
- Adiabatic Regime
- Cryocomp material database
- Magnetoresistivity included
- Transverse+longitudinal propagations considered

→ Magnetic, electrical, thermal models validated
1. Turn-by-turn coil model
 → External joints option
 → Define path for cable exits

2. Coil components
 → Study concepts for external joints

3. Coil fabrication tooling
 → Winding + reaction + splicing + impregnation
 → Study compatibility with the fabrication process
WINDING MOCKUPS - FINALIZED

- 2 options for cable exits:

 A: → Hard-way only
 → 1 layer jump shim

 B: → Easy-way + Hard-way
 → 2 layer jump shims

- Winding trials with SMC-11T cable:
1. Preliminary CAD model of the coils

2. 3D simplified Opera FEM:

 b. Central field:
 • Magnetic Length = 1042 mm
 • Uniform field region (±1%) = 249 mm

 c. Field in critical areas:
 • Peak field in straight section
 • Field in the layer jumps < 14 T
1. **Preliminary CAD** model of the structure

2. **3D simplified Ansys FEM:**
 a. Optimize the transverse preload
 b. Stay below the stress limits:
 - Coil
 - Components
- Verified consistency with 2D model at z=0
- Coil peak stress within targets at z=0
3D Mechanical Design - Ongoing

- Peak stress in coil and critical components within targets
- Next step: optimize longitudinal pre-load
Goal: Demonstrate some key concepts for FCC block-coil dipoles:

- Grading between blocks
- Joint technology

How?
- Relying on proven technology:
 - Block-coil
 - Bladders and keys structure
- Using state of the art conductors
- Developing engineering solutions for joints
 - 2 proposed solutions: internal and external
 - External joints selected to reduce the risks
 - Room to implement internal joints

With today’s state of the art conductors:
- 15.5 T achievable at 14 % margin
- ~18 T at short sample
• Status:
 → Integrated magnetic and mechanical design:
 • 2D magnetic + 2D mechanical completed
 • Protection ongoing
 • 3D magnetic completed, 3D mechanical ongoing
 → Engineering design:
 • Conceptual design of the coil ends and structure finalized
 • Technical solution validated with mock-ups

→ Challenging magnet!

• Future plans: preserve complexity and mitigate risks
 1. 1st stage: Proof-of-concept graded racetrack coils
 → Assembly and test in the F2D2 structure
 2. 2nd stage: F2D2 graded flared-end coils
 → Assembly and test of the final F2D2 magnet
Grading Concept in Block-Coils

- 2D: “grading” needed for FCC [3]
 - 2 cable sizes, same current
 - Optimizing the current density
 - Compact coils = less conductor

- 3D: need “joints” between the cable grades
 1. Internal joints explored within EPFL-CERN Program
 2. External joints explored at CEA

High Field “HF” blocks, low current density

Low Field “LF” blocks, high current density

3D integrated design
- CAD
- Magnetic
- Mechanical
V1.1.1: FROM DOUBLE TO SINGLE APERTURE

ECC double aperture

\[\Omega_{770} \text{ mm} \]

\[\rightarrow 16,1 \ T @ 86 \% \]

Peak stress: 186 MPa

Min contact: -3 MPa

Translation in a single aperture

\[\Omega_{576} \text{ mm} \]

\[\rightarrow 15,8 \ T @ 86 \% \]

Peak stress: 193 MPa

Min contact: 36 MPa

97 mm interbeam

100 mm

0 mm interbeam

IRFU/DACM/LEAS

F2D2 Project Status
MAIN DESIGN FEATURES

- Rectangular Block-coils
- Shell-based structure with Bladders & Keys
- Conductor with present performances

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Current I_{nom}</td>
<td>10378</td>
<td>A</td>
</tr>
<tr>
<td>Short sample current I_{ss}</td>
<td>12118</td>
<td>A</td>
</tr>
<tr>
<td>Bore field at I_{nom} (I_{ss})</td>
<td>15.54 (17.81)</td>
<td>T</td>
</tr>
<tr>
<td>Peak Field at I_{nom} (HF/LF)</td>
<td>16.20 / 11.85</td>
<td>T</td>
</tr>
<tr>
<td>Peak Field at I_{ss} (HF/LF)</td>
<td>18.58 / 13.62</td>
<td>T</td>
</tr>
<tr>
<td>Loadline Margin at I_{nom} (HF/LF)</td>
<td>14.0 / 15.4</td>
<td>%</td>
</tr>
<tr>
<td>Stored Energy I_{nom}</td>
<td>1.4</td>
<td>MJ/m</td>
</tr>
</tbody>
</table>
Parameter Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Initial (Clément) V1</th>
<th>Updated (Jerôme)</th>
<th>Proposed v4</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>LF</td>
<td>HF</td>
<td>LF</td>
<td>HF</td>
</tr>
<tr>
<td>HF</td>
<td>LF</td>
<td>HF</td>
<td>LF</td>
<td>HF</td>
</tr>
<tr>
<td>Strand diameter</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Number of strands</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Unreacted width</td>
<td>12.47</td>
<td>12.310</td>
<td>12.579</td>
<td>12.579</td>
</tr>
<tr>
<td>Unreacted thickness</td>
<td>1.94</td>
<td>1.969</td>
<td>1.969</td>
<td>1.969</td>
</tr>
<tr>
<td>Reacted width</td>
<td>12.6</td>
<td>12.433</td>
<td>12.705</td>
<td>12.74</td>
</tr>
<tr>
<td>Reacted thickness</td>
<td>2.00</td>
<td>2.028</td>
<td>2.06</td>
<td>2.06</td>
</tr>
<tr>
<td>Copper/non-Copper ratio</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Insulation thickness</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Bare cable compaction</td>
<td>11.8</td>
<td>10.5</td>
<td>10.5</td>
<td>%</td>
</tr>
<tr>
<td>Packing factor</td>
<td>85.4</td>
<td>85.9</td>
<td>84.9</td>
<td>%</td>
</tr>
<tr>
<td>Pitch angle</td>
<td>15</td>
<td>16.5</td>
<td>16.5</td>
<td>°</td>
</tr>
<tr>
<td>Transposition pitch</td>
<td>93</td>
<td>83.1</td>
<td>84.0</td>
<td>mm</td>
</tr>
</tbody>
</table>

\[
T_{\text{th target}} = 2d(1 - \text{comp})
\]

\[
W_{\text{target}} = \frac{Nd}{2 \cos(PA)} + 0.24d
\]

\[
\text{Packing} = \frac{A_{\text{strands}}}{A_{\text{bare cable}}} = \frac{N \pi d^2}{4 \cos(PA) T_{\text{th bare}} W_{\text{bare}}}
\]
CABLE DIMENSIONS V4

- Cable does not exist, baseline defined as:
 1. Thickness compaction after cabling: 9 to 12 % → **baseline 10.5 %**
 2. Expansion during reaction → ECC baseline: +3 % **thickness** / +1 % **width**
 3. Insulation → ECC baseline: **150 µm**

- Strategy: **fixed insulated reacted cable dimensions** for the CAD design
 - Baseline cable with increased room for expansion
 → compensation of thicker cables
 - Insulation used to compensate thinner cables

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>HF: 1.1mmx21 strands</th>
<th>LF: 0.7mmx34 strands</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Thick.</td>
<td>Width</td>
<td>Thick.</td>
</tr>
<tr>
<td>Bare Virgin</td>
<td>µm</td>
<td>1969</td>
<td>12579</td>
<td>1253</td>
</tr>
<tr>
<td>Insulation thick.</td>
<td>µm</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Room for expansion during reaction</td>
<td>%</td>
<td>4.6</td>
<td>1.3</td>
<td>4.5</td>
</tr>
<tr>
<td>Insulated Reacted</td>
<td>mm</td>
<td>2.36</td>
<td>13.04</td>
<td>1.61</td>
</tr>
</tbody>
</table>
INTEGRATED 2D MAGNETIC AND MECHANICAL OPTIMIZATION

V1.1.1
ECC 2017 design single aperture

V4.1.1
+ F2D2 Cable V4

V4.4.1
+ Coil position from ECC 2018

V4.4.2
Structure optimized for harmonics
• Non ferromagnetic pad
• Ferromagnetic filler

V4.4.n
Magnetic optimization

V4.4.3
Mechanical optimization

IRFU/DACM/LEAS

F2D2 Project Status

Page 22
Insulated Reacted Cable for the CAD

Insulation

- Bare Reacted Cable
- Bare Virgin Cable

1st margin: to compensate the bare cable

Uncertainty due to cabling R&D

Nominal 150 μm, 2nd possible margin

Fixed Ins. React. Th. for the CAD design

\[
\text{Ins Reacted Th} = \text{Max Bare Virg Th} \times (1 + \text{Nom Exp}) + 2 \times \text{Nom Ins Th}
\]

\[
= 1.1 \times 2 \times (1 - 9\%) \times (1 + 3\%) + 2 \times 150 = 2362 \mu m \approx 2.36 mm
\]

3rd margin: variable shims (insulated fiberglass)
- Fixed value in the nominal drawings
- Free value in the as-built drawings
<table>
<thead>
<tr>
<th>Potential show-stoppers</th>
<th>Internal joints</th>
<th>External joints</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• margin at high field</td>
<td>• room for support</td>
</tr>
<tr>
<td></td>
<td>• room for operations</td>
<td>• room for operations (placing parts, splicing)</td>
</tr>
<tr>
<td></td>
<td>• (placing parts, splicing)</td>
<td></td>
</tr>
<tr>
<td>Clues that it can work</td>
<td>Low joint resistances in FRESCA samples</td>
<td>Concept similar to FRESCA2 endshoes</td>
</tr>
<tr>
<td></td>
<td>and for EPFL joints</td>
<td></td>
</tr>
<tr>
<td>End harmonics</td>
<td>• Compact ends possible</td>
<td>• Ends longer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• « naturally » more homogeneous</td>
</tr>
<tr>
<td>Axial loads</td>
<td>Behavior under Lorentz forces ?</td>
<td>Impact of pre-load ? (sharp wedges, relative motion...)</td>
</tr>
<tr>
<td></td>
<td>(detachment, motions…)</td>
<td></td>
</tr>
<tr>
<td>Layer jumps</td>
<td>No LF layer jump</td>
<td>• Need additional room for LF layer jump</td>
</tr>
</tbody>
</table>
1st Solution for F2D2: Internal Joints

- Ideal solution for FCC
- Concepts:
 - Nb_3Sn-HF to Nb_3Sn-LF joint
 - Performed in an end-spacer
- Winding layout:
 - HF Double-layer pancakes + layer jump
 - LF single layer pancakes

- Status:
 - Joints under development by EPFL-SPC (See presentation “R&D on Nb_3Sn cable splices”, P. Bruzzone and Poster “Preliminary investigations of Rutherford cable splicing techniques for high field accelerator magnets”, M. Kumar)
 - Several explored technical solutions
 - Test on joints in Sultan
 - Engineering implementation in coils remains an open question

→ High technical risk for F2D2
→ High risk for the schedule
ALTERNATIVE SOLUTION FOR F2D2: EXTERNAL JOINTS

- Decoupling grading and joints for the demonstrator
- **Goal:**
 - **Minimize risks in coil fabrication**
 - Each coil heat-treated and impregnated individually
 - Use a known joint technique outside of the coil
- **CAD Geometric investigation ongoing:**
 - **Large footprint outside of the coil**
 - **Routing and supporting the cable**

![Diagram](image)

<table>
<thead>
<tr>
<th>HF blocks</th>
<th>LF blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
</tr>
</tbody>
</table>

- 1 coil = 1 HF double pancake + 1 LF double pancake
- 1 pole = 2 coils
1. HF double-layer pancake with layer jump in the pole
2. Routing of the HF leads in an “inter-coil wedge” → take advantage of flared ends
3. LF double-layer pancake with layer jump in the end-spacer

4. LF leads in the end-shoe

5. Heat treatment and impregnation of the coil

6. Joints Nb3Sn-NbTi outside the coil in the inter-coil wedges
7. Same concept for the other coils
8. Assembly of the coils

9. NbTi-NbTi joints to connect LF and HF leads