

Energy deposition in the Betatron Cleaning Insertion of **HE-LHC** machine

M. Varasteh and F. Cerutti

Tracking input from BE-ABP:

M. Crouch, J. Molson, R. Bruce, A. Mereghetti

Acknowledgments: C. Bahamonde, M.I. Besana, E. Skordis, other colleagues in BMI & FLU

FUTURE CIRCULAR COLLIDER
CONFERENCE 2019
Brussels, Belgium

Outline

- Challenges for the HE-LHC collimation system
- Power density on the collimators and warm magnets
- Energy deposition in the cold section, IR7
- Impact of the dog-leg removal

Parameters / challenges

	unit	FCC-hh	HE-LHC	HL-LHC	LHC
center-of-mass energy	TeV	100	27	14	14
arc dipole field	Т	16	16	8.33	8.33
bunch population [10 ¹¹]	ppb	1	2.2	2.2	1.15
number of bunches		10600	2808	2760	2808
stored beam energy	GJ	8.4	1.4	0.7	0.36
total power loss for 12 min BLT	MW	11.8	1.9	0.95	0.5

Main challenge is due to the restrictions caused by the geometry of the existing Tunnel

As the first stage, the same collimation design as LHC machine is used

- Vertical halo scenario was studied
- Considering high loss scenario of 0.2h beam life time (BLT)

HE-LHC IR7, warm section

- > 8 warm dipoles (MBW)
- 24 warm quadrupoles (MQW)
- Beam-Beam separation (bbs):
 - 204 mm in the arc (194 mm for LHC)
 - 224 mm within the doglegs (same as LHC)
- > 3 Passive absorbers (TCAP) (1 m, 20 cm, 60 cm)

	HE-LHC	LHC	Comments
MBW	3.4 m	3.4 m	different return coils
MQW	3.5 m	3.1 m	different length
Collimators			the same
MQTLH/I	1.3 m	1.3 m	different bbs, beam
	1.5 111		screen, material
MCBCH/V	0.9 m	0.9 m	different bbs, beam
IVICDCH/ V	0.9 111	0.9 111	screen, material
MQ7	3.5 m	3.1 m	different length,
	5.5 111	2.1 111	material

Collimators	Length (cm)	Aperture (σ)	Material	Number
Primary	60	6.7	CFC	3
Secondary	100	9.1	CFC	11
Active absorbers	100	11.5	tungsten	5

about 30 m longer w.r.t. LHC

Horizontal and Skew primary collimators

Secondary collimators

most loaded secondary collimator (1st TCSG)

the maximum is on the metallic support! New design with thicker jaws is mandatory...

Total power (kW)		
Collimators		
<i>56.1</i>		
12.6		
37.3		
6.9		
3.7		
4.9		
5.3		
0.5		
1.2		
1.9		
0.2		

For LHC at 6.5TeV, the max load is about 15 kW

x-y-z resolution: 0.2cm, 1cm, and 10cm

Warm dipole's return coil (MBW)

Warm dipoles

Total power (kW) over warm dipoles		
MBW.B6L	66.36	
NADIAL ACI	52 57	

> Two MBWs downstream the TCPs take more than 99% of the total power on the warm dipoles!

at LHC the maximum is about 22 kW

Maximum power per unit length → 55 kW/m (bulk is below 14 kW/m)

Coils in the most loaded warm dipole

> moving away from the beam pipe, a factor of 10 less dose on the return coil...

In total, the coil insulator can stand about 30 MGy

considering 1e16 proton lost per year

0.25cm, 0.25cm, 5cm (x-y-z resolution)

Warm quadrupoles (MQWs)

Power fraction on different elements at IR7

HE-LHC @ 13.5 TeV

LHC @ 7 TeV

Cold section

With two collimators (TCLDs) in the cold section, before MQ8 and MQ10, the maximum peak power density is about 5 mW/cc

r- φ -z resolution: 1.86cm, 2 $^{\circ}$, 10cm (three radial bins of 1.86cm)

Values are for the 12 min BLT!

Impact of the dogleg removal - I

Impact of the dogleg removal - II

Impact of the dogleg removal - III

	w/o dogleg	dogleg	
PHOTON	4E-3	4E-5	(per proton lost)
NEUTRON	3E-4	-	

Total power (W)			
beam separation in	MQ7	MBA8	
warm section	IVIQ7	IVIDAO	
204mm (no dogleg)	7.1	419.3	
224mm (nominal)	<i>5.9</i>	12.7	
244mm (larger dogleg)	4.8	12.1	

 $(r-\phi-z \text{ resolution: } 1.86\text{cm, } 2^{\circ}, 10\text{cm})$

Messages from FLUKA simulation of HE-LHC machine

- The maximum power collected by a collimator is below 60 kW (for 0.2h BLT)
- For the first TCSG, the max power density is NOT on the Jaw! A new design would address the issue...
- Thanks to the TCLD collimators, Energy deposition in the cold section is NOT hazardous
- No apparent showstopper was seen
- Dogleg removal results in a dramatically higher impact of the neutral particles in the first cold dipole

Mohammad Varasteh

CERN / EN-STI-BMI m.varasteh @ cern.ch

Backup Slides

MBA8

	w/o dogleg	dogleg
PHOTON	48088	1085
NEUTRON	3187	-

Active absorbers	Total power (kW)
TCLA.A6R (CLAA6R1i & j)	3.0
TCLA.B6R (CLAB6R1i & j)	0.3
TCLA.C6R (CLAC6R1i & j)	0.1
TCLA.D6R (CLAD6R1i & j)	0.1
TCLA.A7R (CLAD6R1i & j)	0.03
Passive absorbers	
TCAPA.6L (CAPA6L1)	59.8
TCAPB.6L (CAPB6L1)	8.0
TCAPC.6L (CAPC6L1)	150.3
	T

MAX! In front of most exposed MQW

ELEMENTS	HE-LHC	LHC
TCP & TCS jaws	11.7%	10%
MBW	6.5%	8.5%
MQW	20.0%	9.5%
TCAP	11.8%	13%
Beam pipe	9.2%	8.6%
Tunnel	30.5%	33.1%
Other elements	8.6%	9.4%
Missing energy	2.0%	6.5%
AIR	0.5%	0.5%
Cables	1.8%	0.9%