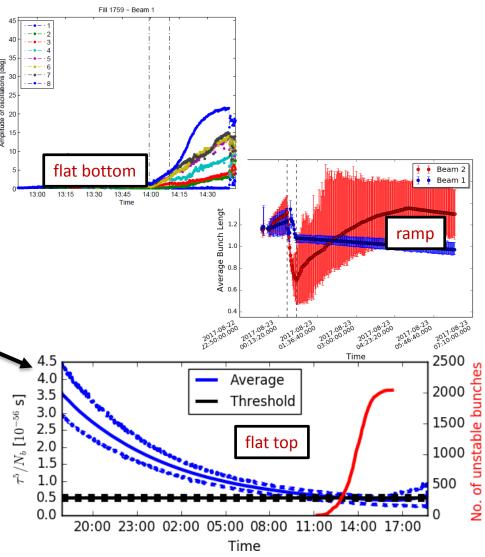


FCC week 2019, Brussels

HE-LHC: Longitudinal beam parameters

E. Shaposhnikova CERN/RF 25.06.2019

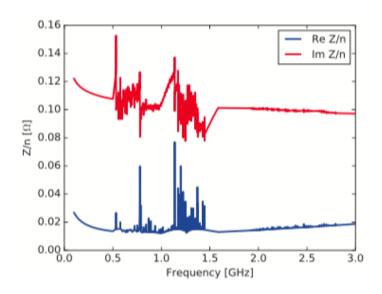

Acknowledgements: T. Argyropoulos, I. Karpov, J. Esteban Muller, H. Timko, F. Zimmermann

Outline

- Longitudinal beam stability in LHC, HL-LHC & HE-LHC
- Beam parameters at 13.5 TeV
- Injection at 0.45, 0.9 & 1.3 TeV
 - Beam parameters at injection
 - RF and beam parameters during acceleration
- Summary

Longitudinal beam stability in LHC

- Main limitation loss of Landau damping due to longitudinal reactive impedance ImZ/n (0.09 Ω in LHC & 0.11 Ω in HL-LHC)
- No longitudinal wideband feedback, beam stability is provided by synchrotron frequency spread ~ h²τ²
 → controlled emittance blow-up
- Stability threshold $N_{th} \sim \tau^5$ is well defined from measurements in LHC runs 1&2 (PhD thesis J.E. Muller, 2016)
- Single-bunch effect, coupled-bunch modes were not observed so far

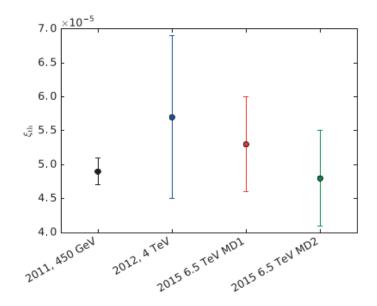


Longitudinal beam stability in HL-LHC


- Increase in bunch intensity by factor 2 and in longitudinal inductive impedance ImZ/n by 20%
 - → For longitudinal stability, the average bunch length on flat top (6.5 & 7 TeV) should be increased to 1.2 ns (± 10% spread)
- Different longitudinal parameters at injection (450 GeV) from 2021, after upgrades of the LHC injector chain (LIU)
 - Higher RF voltage and long. emittance on the SPS top energy
 - → higher capture RF voltage in the LHC
 - Nominal voltage in HL-LHC DR is 8 MV at the limit of available RF power

Longitudinal impedance of HL-LHC

Reactive impedance ImZ/n


Effective impedance (ImZ/n)_{eff} for m=1

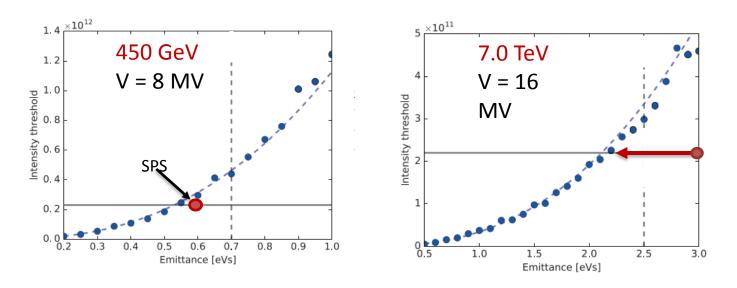
→ Higher effective impedance for larger bunch lengths (injection vs top energy)

Longitudinal beam stability in LHC & HL-LHC

Measurements in LHC:
$$\xi = \frac{\tau^5 V}{N_b}$$

J.E. Muller et al.

Threshold impedance for loss of Landau damping


$$(\text{Im}Z/n)_{\text{th}} \propto \frac{\tau^5 V}{N_b} \rightarrow \xi = \frac{\tau^5 V}{N_b}$$

LHC:
$$\xi_{th} = (5.0 \pm 0.5) \times 10^{-5} \text{ (ns)}^{5}\text{V}$$

Due to 20% increase in impedance, HL-LHC: $\xi_{th} = (4.2 \pm 0.4) \times 10^{-5} \text{ (ns)}^{5}\text{V}$

Longitudinal beam parameters in HL-LHC

Thresholds for longitudinal single bunch stability (loss of Landau damping)

Bunch length spread of \pm (10-15)% in run 2 \rightarrow \pm 25% in emittance

Longitudinal beam parameters in HE-LHC

Various possible injection energies:

```
- 0.45 TeV - present SPS
- 0.9 TeV - upgraded SPS
- 1.3 TeV - new "SPS"
```

- Higher top energy: 13.5 TeV vs 7 TeV in LHC
- Two different optics under consideration with

```
- \gamma_{t} = 53.8 \quad (\alpha = 3.45 \times 10^{-4}) \quad - \text{ as in HL-LHC} - \gamma_{t} = 42.08 \quad (\alpha = 5.646 \times 10^{-4})
```

RF voltage & longitudinal beam stability in HE-LHC

RF voltage needed for the given filling factor of the bucket area:

$$V \sim \epsilon^2 \eta / E \sim \epsilon^2 \alpha / E \sim \epsilon^2 / (E \gamma_t^2)$$

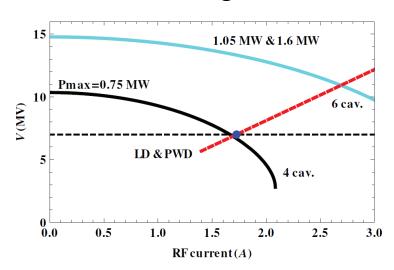
 \rightarrow 1.6 times more V for larger α and same emit., as @ 0.45 GeV Emittance for longitudinal beam stability (Landau damping)

$$\epsilon \sim (E/\eta)^{1/2} \sim E^{1/2} \gamma_t$$

- → larger emittance (controlled blow-up during ramp) @13.5 TeV, but similar voltage
- \rightarrow at fixed energy E, voltage V is similar in two optics (γ_t)
- → keep the same bunch length as in HL-LHC

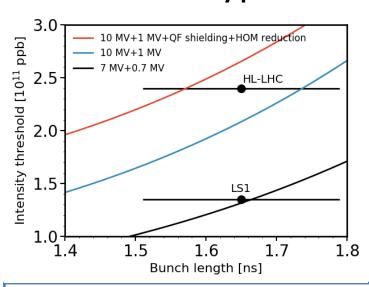
High energy: 13.5 TeV

HE-LHC at 13.5 TeV (during physics)


Energy TeV	Optics Y _t	Intensity/b [10 ¹¹]	400 MHz RF voltage [MV]	Bunch length (4 σ) [ns]	Emittance (2 σ) [eVs]	±Δp/p (2 σ) [10 ⁻⁴]
7.0	53.8 HL-LHC	2.3	16.0	1.2	3.03	2.36
13.5	53.8	2.3	16.0	1.2	4.20	1.70
13.5	42.08	2.3	16.0	1.2	3.30	1.33

HE-LHC parametes obtained by scaling from values at 7 TeV for HL-LHC baseline (ImZ/ $n_{\rm eff}$ =0.11 Ohm)

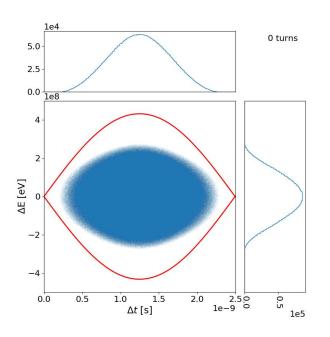
Present injection energy: 0.45 TeV (with SPS after LIU upgrade)

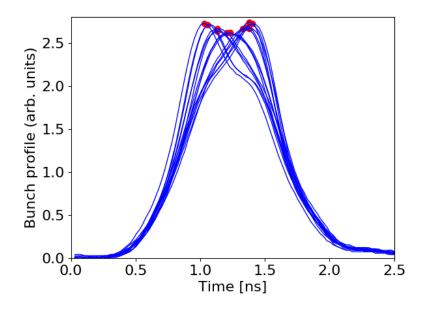

SPS after LIU upgrades (>2021)

Available RF voltage at 200 MHz

 $3.0 \text{ A} \rightarrow 2.3 \times 10^{11} \text{ p/b, 25 ns bunch spacing}$

Threshold intensity per bunch


BLonD simulations at 450 GeV with 72 bunches using full SPS impedance model (J. Repond et al.)


SPS at 0.45 TeV now and after LIU (> 2021)

Intensity/bunch [10 ¹¹]	200 MHz voltage [MV]	Bunch length 4 σ [ns]	Emittance 2 σ [eVs]	±Δp/p 2 σ [10 ⁻⁴]	Comments
1.2	7.0 – max now	1.65	0.48	4.30	achieved
1.2	10.0	1.24 ns	0.35 – min	4.11	>2021
2.4	10.0 – max	1.65 ns	0.57	5.12	>2021

- Q20 optics $(\gamma_{t} = 18)$
- LIU-SPS: 200 MHz RF upgrade plus impedance reduction
- Beam parameters in a double RF system (200 + 800 MHz) with $V_{800}=0.1 V_{200}$
- Additional stability margin with higher 800 MHz RF voltage (1.6 MV maximum)
- Bunch length is determined from FWHM bunch length assuming a Gaussian distribution
- Momentum spread and emittance are defined by particle trajectory corresponding to the $4-\sigma$ bunch length (without potential well distortion, ~ 2%)

Injection into the LHC

Longitudinal phase space at injection into LHC for nominal LIU-SPS (10 MV) and HL-LHC (8 MV) parameters without injection errors.

Unmatched voltage needed due to injection errors

Undamped bunch oscillations after injection into mismatched voltage. Lower instability threshold

6/25/2019

HL-LHC and HE-LHC at 450 GeV

- For HL-LHC, the situation at injection (450 GeV) was revisited recently due to potential RF power limitation (with half-detuning scheme for transient beam loading compensation)
 - Matched RF voltage at 400 MHz is ~2.3 MV for SPS Q20 optics
 - Mismatched voltage (6 MV) was used most of run2 to accommodate phase and energy errors, but it also leads to lower instability threshold
 - In 2018 voltage was decreased in operation to 4 MV (batches of 48 bunches with nominal LHC intensity)
 - Worse for the Q22 optics in the SPS (not considered anymore)
- → Solution found for HI-LHC will be adapted for HE-LHC

LHC & HL-LHC at 450 GeV: beam after filamentation

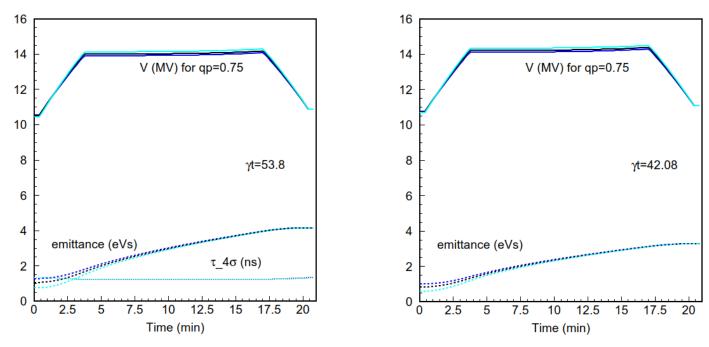
- Beam parameters after filamentation depend on RF voltage in LHC
- Maximum emittance after filamentation is similar to the injected one, but particle distribution is different
- Potential well distortion (intensity effect) gives < 5% smaller Δp/p

	Intensity/bunch [10 ¹¹]	400 MHz RF voltage [MV]	Bunch length (4σ) [ns]	Emittance (2 σ) [eVs]	±Δp/p (2 σ) [10 ⁻⁴]
Run 2	1.15	6.0	1.21	0.48	5.77
End 2018	1.15	4.0	1.34	0.48	5.24
HL-LHC	2.3	8.0	1.24	0.58	6.81
HL-LHC	2.3	6.0	1.35	0.58	6.31

Higher injection energy: 0.9 & 1.3 TeV (with new injector)

HE-LHC with $\gamma_t = 53.8$ ($\alpha = 3.45 \times 10^{-4}$): beam parameters after capture for 2.3E11 ppb

Beam energy [TeV]	400 MHz RF voltage [MV]	Emittance (2 σ) [eVs]	Bunch length (4 σ) [ns]	±Δp/p (2 σ) [10 ⁻⁴]
0.45	8.9	0.7	1.35	7.6
0.9	9.1	1.0	1.35	5.44
1.3	9.1	1.19	1.35	4.52


- All emittances are defined by longitudinal stability in LHC (and scaled from the 0.45 TeV value) taking into account 20% spread in emittance
- The SPS (after LS2) cannot produce 0.7 eVs with 1.65 ns bunch length (288 bunches) in Q20
- RF voltage is calculated for 0.75 bucket filling factor in momentum
- Bunch length is after capture and filamentation

HE-LHC with $\gamma_t = 42.08$ ($\alpha = 5.646 \times 10^{-4}$): beam parameters after capture for 2.3E11 ppb

Beam energy [TeV]	400 MHz RF voltage [MV]	Emittance (2 σ) [eVs]	Bunch length (4 σ) [ns]	±Δp/p (2 σ) [10 ⁻⁴]
0.45	9.0	0.55	1.35	5.98
0.9	9.1	0.78	1.35	4.24
1.3	9.1	0.94	1.35	3.54

- All emittances are defined by longitudinal stability in LHC (and scaled from 0.45 TeV value) taking into account 20% spread in emittance
- RF voltage is defined by 0.75 bucket filling factor in momentum
- Bunch length at injection energies is after bunch capture and filamentation

Emittance and RF voltage during ramp with different injection energies in two HE-LHC optics

 \rightarrow For fixed bucket filling factor in momentum of qp = 0.75, max RF voltage is 14 MV

Summary

- Beam parameters in HE-LHC have been found for different optics from scaling from the LHC and choices made for the HL-LHC (7 TeV).
- At injection energy of 0.45 TeV, longitudinal parameters (emittance) are defined by the present SPS. In this case, more RF voltage will be required in the HE-LHC optics with higher α
- At 1.3 TeV (or 0.9 TeV) minimum longitudinal emittance should be determined by beam stability in HE-LHC
- The present SPS cannot produce beam with average emittance, required for stability in the HE-LHC, and nominal bunch length of 1.65 ns

Spare slides

HE-LHC with $\gamma_t = 53.8$ ($\alpha = 3.45 \times 10^{-4}$): beam parameters after capture for 2.3E11 ppb

Beam energy [TeV]	400 MHz RF voltage [MV]	Emittance (2 σ) [eVs]	Bunch length (4 σ) [ns]	±Δp/p (2 σ) [10 ⁻⁴]
0.45	10.4	0.76	1.35	8.27
0.9	10.5	1.08	1.35	5.84
1.3	10.6	1.29	1.35	4.86
13.5	10.9	4.16	1.34	1.52

- All emittances are defined by longitudinal stability in LHC and scaled from the 7
 TeV value (25% spread in emittance)
- The SPS (after LS2) cannot produce 0.76 eVs with 1.65 ns bunch length (288 bunches) in Q20
- RF voltage is calculated for 0.75 bucket filling factor in momentum
- Bunch length is after capture and filamentation

HE-LHC with $\gamma_t = 42.08$ ($\alpha = 5.646 \times 10^{-4}$): beam parameters after capture for 2.3E11 ppb

Beam energy [TeV]	400 MHz RF voltage [MV]	Emittance (2 σ) [eVs]	Bunch length (4 σ) [ns]	±Δp/p (2 σ) [10 ⁻⁴]
0.45	10.7	0.60	1.35	6.53
0.9	10.8	0.85	1.35	4.61
1.3	10.8	1.02	1.35	3.84
13.5	11.0	3.29	1.34	1.2

- All emittances are defined by longitudinal stability in LHC and scaled from 7
 TeV values (25% spread in emittance)
- RF voltage is defined by 0.75 bucket filling factor in momentum
- Bunch length at injection energies is after bunch capture and filamentation