QCD uncertainties in forwardbackward asymmetries of b-quarks in e⁺e⁻ at the Z pole

FCC week 2019

Brussels, 27th June 2019

David d'Enterria (CERN)
Cynthia Yan (HMC, Clareton)

Couplings of the Z boson to fermions

■ SM electroweak interaction Lagrangian in terms of weak & e.m. currents:

$$\mathcal{L} = g\vec{J}.\vec{W} + g'J^YB = \frac{g}{\sqrt{2}}(J^-W^+ + J^+W^-) + \frac{g}{\cos\theta_W}(J^3 - \sin^2\theta_W J^{EM})Z^0 + eJ^{EM}A^0$$
 W[±] couplings of strength g to weak-isospin J[±] Z neutral couplings: mixed weak-isospin J³ + e.m. γ couplings of strength e

& e.m. (Q) couplings & charges: $Q = I_3 + \frac{Y}{2}$ $J^{EM} = J^0 + \frac{1}{2}J^Y$

Weak-isospin (I
$$_3$$
), hypercharge (Y) $g\sin\theta_W=g'\cos\theta_W=e, \sin^2\theta_W=0.22$ & e.m. (Q) couplings & charges: $Q=I_3+\frac{Y}{2}$ $J^{EM}=J^0+\frac{1}{2}J^Y$

Electron-positron annihilation into fermions: $e^+e^- \rightarrow Z \rightarrow ffbar$

Z boson has left-handed (from J³,J^{em}) & right-handed (from J^{em}) couplings to fermions:

$$g_L = I_3 - Q \sin^2 \theta_W$$
 $g_R = -Q \sin^2 \theta_W$

These are usually expressed as vector and axial-vector couplings c_V and c_A :

$$c_V = g_L + g_R = I_3 - 2Q \sin^2 \theta_W$$
 $c_A = g_L - g_R = I_3$

and the vertex coupling for a neutral current interaction is written:

$$i\frac{g}{\cos\theta_W}\gamma^{\mu}\frac{1}{2}(c_V-c_A\gamma^5)$$

Note that c_V and c_A have different values for different types of fermion.

Lepton	$2c_V$	$2c_A$	Quark	$2c_V$	$2c_A$
$ u_e, u_\mu, u_ au$	1	1	u, c, t	$1-rac{8}{3}\sin^2 heta_W$	1
e,μ, au	$-1+4\sin^2\theta_W$	-1	d, s, b	$-1+\frac{4}{3}\sin^2\theta_W$	-1

Z couplings depend on the fermion Q,I, (i.e. diff. for diff. lepton/quark type)

Forward-backward $e^+e^- \rightarrow f f$ asymmetries

Mixed Z vector & axial-vector couplings induce asymmetries in angular distributions of the final-state fermions (a part from e[±] helicity, and polarization of the produced particles) fully determined by weak mixing angle:

Experimentally: Take ratio of number of forward (backward) (anti)fermions in hemisphere defined by the direction of the e^{-} (e^{+}) beam: $\theta < (>) \pi/2$.

The $\cos \theta$ term gives a forward-backward asymmetry

$$A_{FB}^{b} = \frac{N_F - N_B}{N_F + N_B}$$
 $F = \int_0^1 \frac{d\sigma}{d\Omega} d\Omega$ $B = \int_{-1}^0 \frac{d\sigma}{d\Omega} d\Omega$ e^+

$$F = \int_0^1 \frac{d\sigma}{d\Omega} d\Omega$$

$$B = \int_{-1}^{0} \frac{d\sigma}{d\Omega} d\Omega$$

Forward-backward bb asymmetry around Z pole

■ LEP exps. carried out 8 measurements (lepton- or jet-charge based) of A_{ER} (largest & most accurately measured one of all fermions):

■ Experimental b-quark asymmetry has a ~2.8 pull w.r.t. theoretical prediction including QED/EWK, NNLO QCD, b-quark mass, jet/thrust axis corrections

sin²θ_{eff} from b-b fwd-bckwd asymmetry in e⁺e⁻

Effective weak angle from b-quark asymmetry at Z pole is 2.6σ away from world-average. Largest TH-EXP discrepancy among EWPOs:

b-quark asymetry uncertainties at the Z pole

Experimental uncertainties on A_{FB}^{0,b} extraction:

- Statistical: ±1.5%

At planned FCC-ee, with $\times 10^5$ more e⁺e⁻ \rightarrow Z's than LEP, stat. uncert. will be negligible: ~0.05%

Systematics: ±0.6%

QCD-related: ±0.5%

Table 1: LEP measurements of $A_{\rm FB}^{0,b}$ and associated statistical, total systematic, and QCD-systematic uncertainties (with the newly-computed QCD systematics quoted in parentheses).

Measurement	$A_{ m FB}^{0,b}$		uncertainties	
	15	stat.	total syst.	QCD syst. (new)
ALEPH lepton (2002) ⁴	$0.1003 \pm 0.0038 \pm 0.0017$	4.1%	1.7%	0.6% (0.8%)
DELPHI lepton $(2004-5)^5$	$0.1025 \pm 0.0051 \pm 0.0024$	6.4%	2.4%	1.5% (1.3%)
L3 lepton $(1999)^6$	$0.1001 \pm 0.0060 \pm 0.0035$	6.9%	3.4%	1.8% (0.8%)
OPAL lepton $(2003)^7$	$0.0977 \pm 0.0038 \pm 0.0018$	4.3%	1.5%	1.1% (1.4%)
ALEPH jet-charge (2001) ⁸	$0.1010 \pm 0.0025 \pm 0.0012$	2.7%	1.1%	0.5% (0.5%)
DELPHI jet-charge (2005) ⁹	$0.0978 \pm 0.0030 \pm 0.0015$	3.3%	1.5%	0.5% (0.4%)
L3 jet-charge (1998) 10	$0.0948 \pm 0.0101 \pm 0.0056$	10.8%	5.9%	4.1% (0.4%)
OPAL jet-charge $(2002)^{11}$	$0.0994 \pm 0.0034 \pm 0.0018$	3.7%	1.8%	1.5% (0.3%)

- \blacksquare QCD biases on $A_{FB}^{0,b}$ (depending strongly on exp. selection procedure):
 - Hard gluon radiation (controlled theoretically via α_s^2 NNLO corrections)
 - Smearing of b-jet (thrust) axis due to:
 - (1) b and $(b\rightarrow)$ c soft radiation & hadronization.
 - (2) B and D hadron decay models.

[Estimated via partonshower simulations by

Abbaneo et al.,

EPJC 4 (1998)]

QCD Monte Carlo setup (I)

- LEP QCD uncertainties based on JETSET (1998). Lots of progress in parton-shower & hadronization in the last 20 years. Impact on A_{FR} ?
- We run $10^7 e^+e^- \rightarrow Z \rightarrow bb$ events in $8(\times 8)$ MC setups mimicking the 8 (4 lepton-based, 4 jet-charge-based) LEP measurements.
- PYTHIA 8.226 with 7 different parton-shower & hadronization tunes:

tune 1	the original PYTHIA8 parameter set, based on some very old flavor studies
	(with JETSET around 1990) and a simple tune of alpha_strong to three-jet
	shapes to the new pT-ordered shower.
tune 2	a tune by Marc Montull to the LEP 1 particle composition, as published in
	the RPP (August 2007).
tune 3	a tune to a wide selection of LEP1 data by Hendrik Hoeth within the Rivet +
	Professor framework, both to hadronization and timelike-shower parameters
	(June 2009).
tune 4	a tune to LEP data by Peter Skands, by hand, both to hadronization and
	timelike-shower parameters (September 2013). use CMW convention for the
	shower alpha_s scale.
tune 5	first tune to LEP data by Nadine Fischer (September 2013), based on the
	default flavor-composition parameters. Input is event shapes (ALEPH and
	DELPHI), identified particle spectra (ALEPH), multiplicities (PDG), and B
	hadron fragmentation functions (ALEPH).
tune 6	second tune to LEP data by Nadine Fischer (September 2013).
tune 7	the Monash 2013 tune by Peter Skands at al. to both $e^+ + e^-$ and $pp/p\bar{p}$ data.
1	

QCD Monte Carlo setup (II)

- We run $10^7 e^+e^- \rightarrow Z \rightarrow bb$ events in $8(\times 8)$ MC setups mimicking the 8 (4 lepton-based, 4 jet-charge-based) LEP measurements.
- PYTHIA 8.226+VINCIA 2.2 (alternative dipole antenna parton shower): Different PS impacts b-jet thrust & (refitted) b→B fragmentation: Central VINCIA tune with uncertainty given by 10 parameter variations:

variation 0	Current (user) settings.
variation 1	Default settings (default antenna functions, default α_s settings).
variation 2	User settings with $\alpha_s(Q/k_\mu^{ub})$, where $Q=k_\mu\mu_R$ is the user scale choice and k_μ^{ub}
	is an additional scaling factor.
variation 3	User settings with $\alpha_s(k_\mu^{ub}Q)$.
variation 4	MAX antenna set (large finite terms) with user α_s settings.
variation 5	MIN antenna set (large finite terms) with user α_s settings.
variation 6	NLO-Hi: user settings with branching probabilities multiplied by $(1 + \alpha_s(Q))$
	to represent unknown (but finite) NLO corrections.
variation 7	NLO-Lo: as above, but with division instead of multiplication.
variation 8	User settings with all color factors for gluon emission =3.
variation 9	User settings with all color factors for gluon emission $=8/3$.
variation 10	User settings with a modified Pimp factor, scales enter with 4th power instead
	of 2nd power, only if smooth ordering on.

QCD Monte Carlo setup (II)

- We run $10^7 e^+e^- \rightarrow Z \rightarrow bb$ events in $8(\times 8)$ MC setups mimicking the 8 (4 lepton-based, 4 jet-charge-based) LEP measurements.
- PYTHIA 8.226+VINCIA 2.2 (alternative dipole antenna parton shower) Different PS impacts b-jet thrust & (refitted) $b\rightarrow B$ fragmentation:

$e^+e^- \rightarrow b^- b$ at $\sqrt{s} \approx 91.2$ GeV: MC simulation analyses

Original LEP analyses reimplemented in 8×8 PY8(+VINCIA) simulations:

lepton measurem	lepton cuts applied
ALEPH-2002	$y_{cut} \ge 0.02$. $M_{jet} \ge 6 \text{GeV/c}^2$. For $e, p \ge 2 \text{GeV/c}$. For $\mu, p \ge 2.5 \text{GeV/c}$.
DELPHI-2004	$y_{cut} \ge 0.01$. For $e, p \ge 2$ GeV/c. For $\mu, p \ge 2.5$ GeV/c. For both e and μ , $p_{\perp} \ge 1.6$ GeV/c.
L3-1999	$y_{cut} \ge 0.02$. $M_{jet} \ge 6 \text{GeV/c}^2$. For $e, p \ge 3 \text{ GeV/c}$. For μ , $p \ge 4 \text{ GeV/c}$. For both e and $\mu, p_{\perp} \ge 1 \text{GeV/c}$
OPAL-2003	$y_{cut} \ge 0.02$. For both e and μ , $p \ge 2 \text{ GeV/c}$.

jet-based measurem	jet-charge cuts applied
ALEPH-2001	$y_{cut} \ge 0.02.$ $M_{jet} \ge 6 \text{GeV/c}^2.$ $\kappa = 0.5$
DELPHI-2005	$y_{cut} \ge 0.01.$ $\kappa = 0.6$
L3-1998	$y_{cut} \ge 0.02.$ $M_{jet} \ge 6 \text{GeV/c}^2.$ $\kappa = 0.4$
OPAL-2002	$y_{cut} \ge 0.02.$ $\kappa = 0.5$

Lepton-based Ab measurements

- Original LEP analyses reimplemented in 8×8 PY8(+VINCIA) simulations:
 - Reconstruct b-jets with Jade algorithm.
 - Determine the thrust axis of event (as a proxy of the $b\overline{b}$ direction)
 - Determine b-quark charge from hardest lepton charge.
 - Measure θ between e^- and thrust axis
 - Fit differential cross section and extract A^{obs}_{FB}

$$\frac{d\sigma}{d\cos\theta} = \sigma \frac{3}{8} \left(1 + \cos^2\theta + \frac{8}{3} A_{FB}^{obs} \cos\theta \right)$$

• Correct for $\chi_B \sim 0.12$ to transform A_{FB}^{obs} to A_{FB}^b

$$A_{FB}^{obs} = A_{FB}^{b}(1-2\chi_B)$$

 χ_B : the $B^0\overline{B^0}$ effective mixing parameter (the probability that a semileptonically decaying b-quark is reconstructed as a \overline{b} -quark)

Lepton-based A^b_{FB} **extraction**

Examples of fits of reconstructed polar angle $\frac{d\sigma}{d\cos\theta}$ distributions (tune= 7)

Jet-charge-based A_{FB} measurements

- Original LEP analyses reimplemented in 8×8 PY8(+VINCIA) simulations:
 - Reconstruct b-jets with Jade algorithm.
 - Determine the thrust axis of the event (as a proxy of the $b\overline{b}$ direction)
 - Identify b-quark and \overline{b} -quark using jet charge $Q_J = \frac{\sum p_L^{\kappa}Q}{\sum p_L^{\kappa}}$ where p_L is the longitudinal momentum of the final-state particles with respect to the thrust axis
 - Extract A_{FB}^{obs} by fitting $\cos \theta$ distribution

$$rac{\langle Q_F - Q_B
angle}{\langle Q_b - Q_{\overline{b}}
angle} = \mathsf{A}_{FB}^{obs} rac{8}{3} rac{\cos heta}{1 + \cos^2 heta}$$

 Q_F jet charge in the forward hemisphere Q_B jet charge in the backward hemisphere

• Correct for missing higher-order QCD terms and for difference between thrust axis and b-direction $1+C=1.00319\pm0.00033$ (full QCD correction in an unbiased sample of $b\bar{b}$ events: C value is slightly different for parton- and hadron-level corrections, and is experiment-dependent)

Jet-charge-based A_{FB} extraction

Examples of fits of reconstructed polar angle Q_F , Q_B distributions (tune= 7)

Lepton-based Ab : QCD uncertainties

New average QCD uncertainties ~consistent with original ones

Jet-charge-based Ab : QCD uncertainties

Smaller average uncertainties than lepton-based analysis. New QCD uncertainties consistent or smaller than original ones

Summary

Forward-backward asymetry of b-quarks in e⁺e⁻ → Z(bb) shows largest TH-EXP discrepancy today among EWPO: A_{FB} = 0.0992±0.0016 (2.8σ from th.: 0.1037±0.0008)

- Dominant systematic uncertainties due to QCD effects (parton shower, hadronization) have not been cross-checked in 20 years.
- Reanalysis of QCD uncertainties with modern PS (PY8, PY8+VINCIA):

- New QCD uncertainties consistent (slightly smaller) with old ones. Jet-based more precise than lepton-based extraction. Updated $A_{FR} = 0.0996\pm0.0015$
- Ongoing sim. with ×100 times more stats. to "approach" FCC-ee conditions.
 FCC-ee QCD b-jet fragmentation studies needed to further reduce uncertainty.

Backup slides