Industrialization of 16T Nb3Sn magnet production for HE-LHC and FCC

FCC WEEK 2019, Brussels, Belgium

Ananda Chakraborti, Suraj Panicker, Eric Coatanéa, Kari T. Koskinen Automation and Mechanical Engineering Dept. Tampere University (TAU), Finland Email: <u>ananda.chakraborti@tuni.fi</u> Phone: (+358) 413692130

Contents

- Introduction
- Statistical M&S of Nb3Sn magnet manufacturing system
- Surrogate-based analysis and optimization of Manufacturing Systems with DACM Framework and Bayesian Networks (BN)
- Adoption of Industry 4.0 tools and techniques in magnet production
- Conclusion

| 3

Introduction

- Cost-effective manufacturing of Nb3Sn magnets for FCC and HE-LHC can be achieved by optimization of current HL-LHC magnet manufacturing performance using key performance indicators (KPI)
- Statistical modeling and simulation of Nb3Sn manufacturing system (winding house)
- Surrogate-based analysis and optimization of manufacturing systems with Dimensional Analysis Conceptual Modeling (DACM[1]) framework and Bayesian Networks

[1] Coatanéa, E., Roca, R., Mokhtarian, H., Mokammel, F., & Ikkala, K.(2016). A conceptual modeling and simulation framework for system design.Computing in Science & Engineering, 18(4), 42-52

Statistical M&S of Nb3Sn magnet manufacturing system

Winding house simulation at LMF

Statistical modeling of Nb3Sn magnet manufacturing (11 T dipole – winding house)

Simulation Results

WnC process parameters	Results
Estimated process throughput (coils)	23
Average winding time (hrs)	83.738
Winding machine utilization (%)	93.32
Curing press utilization (%)	79.29

Surrogate-based analysis and optimization of Manufacturing Systems with DACM Framework and Bayesian Networks (BN)

DACM Framework

- DACM is a conceptual modeling mechanism for complex systems
- The main goal of DACM is to extract and encode knowledge of different forms in the system with the help of causal representation
- DACM has been successfully applied to case studies in the domain of additive manufacturing (AM), product design and multidisciplinary design optimization (MDO)

Probabilistic Cost Models with BN

Results

Manufacturing Decisions

Effect on performance

targets

Results Contd.

Suggested

Dimensionality Reduction

Figure 1: Combined framework for the developed methodologies

TJ Tampere University

Graph centrality scores

Adoption of Industry 4.0 tools and techniques in magnet production

Need for digitalization in HL-LHC production

Tampere University

- Complete traceability of components
- Production process status info (in phases)
- Detailed production cost breakdown
- Live status of the device: running, idle, off-line
- Quality risks, reliability of delivery related risks
- Anomaly detection

Flowtag installations in production for machine vibration tracking – example form a pilot case in Finland

Production visualization – example from a pilot case study in Finland

| 18

Conclusion

- Statistical modeling and simulation of Nb3Sn magnet manufacturing is conducted to predict coil production parameters
- Surrogate-based analysis and optimization models for manufacturing cost are built and tested with various case studies
- Adoption of Industry 4.0 tools and techniques in SC magnet production are discussed