The European Circular Energy-Frontier Collider Study (EuroCirCol) project has received funding from the European Union's Horizon 2020 research and innovation programme under grant No 654305. The information herein only reflects the views of its authors and the European Commission is not responsible for any use that may be made of the information.
OUTLINE

Beam induced vacuum effects

1. General expression
2. Synchrotron radiation in the FCC-hh. 160 times higher linear power density
3. Photon stimulated desorption
4. Electron stimulated desorption
5. Ion stimulated desorption

The FCC-hh beam screen

6. Main features. Functional map
7. Comparison with the LHC BS

Molecular density results, conclusions and future work
The FCC-hh beam energy and consequent SR power levels are unprecedented for hadron colliders, and a thorough study had to be carried out to determine its impact on the vacuum level.

In order to guarantee an affordable conditioning time before meeting the molecular density requirement, a new beam screen had to be designed, including new beam induced effects mitigation measures.

General Expression

\[
n = \frac{P}{kT} = \frac{Q}{SkT} = \frac{(\eta_{ph} + \eta'_{ph}) \dot{\nu}_{ph} + (\eta_e + \eta'_e) \dot{\nu}_e + (\eta_i + \eta'_i) \sigma_i \frac{1}{e} n + Aq}{S}
\]

- \(\eta\) depends on the material properties
- \(\eta_{ph}\): photon-stimulated desorption (PSD)
- \(\eta_e\): electron-stimulated desorption (ESD)
- \(\eta_i\): ion-stimulated desorption (ISD)

\[
\tau_{bg} = \frac{1}{\sigma_g c n} > 100 \text{ h}
\]

\(n \leq 10^{15} \text{ H}_2_{eq}/\text{m}^3\)

Molecular density requirement to reach 100 h of nuclear scattering beam lifetime whilst keeping the related heat load to the cold mass within the budget.

Table - Parameters Comparison

<table>
<thead>
<tr>
<th>Parameter</th>
<th>LHC</th>
<th>FCC-hh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy [TeV]</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>Current [mA]</td>
<td>580</td>
<td>500</td>
</tr>
<tr>
<td>Photon flux [ph/(m·s)]</td>
<td>(1 \cdot 10^{17})</td>
<td>(1.7 \cdot 10^{17})</td>
</tr>
<tr>
<td>SR power in BM [W/m]</td>
<td>0.22</td>
<td>35.4</td>
</tr>
<tr>
<td>Critical energy [eV]</td>
<td>43.8</td>
<td>4286</td>
</tr>
<tr>
<td>Cold bore aperture [mm]</td>
<td>50</td>
<td>44</td>
</tr>
<tr>
<td>Circumference [km]</td>
<td>26.7</td>
<td>97.75</td>
</tr>
</tbody>
</table>

\[
P_{\text{cold mass}} = k_c (1 - k_w) \frac{IE}{c \tau_{bg}} < 0.2 \text{ W/m}
\]
\[\varepsilon_c [eV] = 3.583 \times 10^2 \frac{E^3[TeV]}{\rho[m]} \]

\[P \ [W/m] = 1.239 \frac{E^4[TeV]}{\rho^2 [m]} I[mA] \]

\[I_{ph} \left[\frac{ph}{m \cdot s} \right] = 7.007 \times 10^{16} \frac{E[TeV] I[mA]}{\rho[m]} \]

- The beam energy increase, from 7 TeV to 50 TeV, entails a [**SR linear power density 160 times higher**](#), and a SR critical energy (\(\varepsilon_c \)) around 100 times higher.

- This increment not only has direct consequences to the cooling system, but also to the vacuum system, since [**the higher SR power and flux are expected to increase the gas load in the vacuum chamber**](#). Meeting the vacuum requirement of \(10^{15} \text{H}_2 \text{eq/m}^3 \) is considerably more challenging.
PHOTON STIMULATED DESORPTION

- The amount of released gas molecules per photon depends on the photon energy

- Lacking experimental data, the molecular yield for the FCC-hh conditions has been estimated

For high photon doses, all common technical materials have a similar η. The main concern is the machine commissioning (low photon doses)

$$Q_{PSD} = (\eta_{ph} + \eta'_{ph}) \dot{I}_{ph} kT$$

- Owing to the higher SR power and the implemented SEY mitigation, PSD is expected to be the cause of the highest gas load, as opposed to the LHC, where it plays a secondary role with respect to e-cloud effects
PHOTON STIMULATED DESORPTION

If the SR impacted directly on the cold mass, the recycling effect would not allow the gas to condense and the pumping speed would be drastically reduced.

- The ray tracing simulations give us information of the SR flux and power distribution.
- More than 95% of the SR power hitting the BS is absorbed in the first hit.
- Less than 0.01% of the emitted power reaches the cold bore, allowing the generated gas to condense onto the cold bore and the coverage to grow over time, with a low gas recycling rate.

Gas coverage evolution over time on the 1.9 K CB

V. Anashin, O. Malyshev. Vacuum 53, 269-272
ELECTRON STIMULATED DESORPTION

\[N_e = \int_{E_{\text{min}}}^{E_{\text{max}}} \Gamma_{\text{ph}}(E) Y_{\text{ph}}(E) \, dE \]

- The electrons accelerated by the beam’s positive potential desorb non-negligible amounts of gas when hitting the chamber walls, therefore increasing the gas density in the vacuum chamber.

- The \(e^- \) density is proportional to the \(e^- \) generation rate \((N_e) \) depending in turn on the SR arriving to the critical areas.

In order to avoid instabilities and keep a good vacuum quality, \(N_e \) should be kept well below \(10^{12} \, e^-/(cm^2\cdot s) \)

<table>
<thead>
<tr>
<th>Absorbing surface</th>
<th>SR power absorption</th>
<th>SR power on CB</th>
<th>SR power on inner Cu</th>
<th>(N_e) if Cu [e/(cm(^2\cdot s)]</th>
<th>(N_e) if LASE [e/(cm(^2\cdot s)]</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rounded SS tip</td>
<td>43%</td>
<td>7.1 (\cdot 10^{-2}) %</td>
<td>18.7%</td>
<td>3.1 (\cdot 10^{13})</td>
<td>1.6 (\cdot 10^{12})</td>
<td>Non-viable</td>
</tr>
<tr>
<td>Flat OFHC Cu</td>
<td>46%</td>
<td>1.8 (\cdot 10^{-3}) %</td>
<td>5.3%</td>
<td>3.2 (\cdot 10^{12})</td>
<td>3.7 (\cdot 10^{11})</td>
<td>Non-viable</td>
</tr>
<tr>
<td>LHC sawtooth</td>
<td>96%</td>
<td>4.4 (\cdot 10^{-4}) %</td>
<td>0.27%</td>
<td>3.1 (\cdot 10^{11})</td>
<td>7.1 (\cdot 10^{10})</td>
<td>Acceptable</td>
</tr>
<tr>
<td>FCC-hh sawtooth</td>
<td>98%</td>
<td>3.4 (\cdot 10^{-4}) %</td>
<td>0.14%</td>
<td>1.0 (\cdot 10^{11})</td>
<td>2.3 (\cdot 10^{10})</td>
<td>High performance</td>
</tr>
</tbody>
</table>
Using LASE or carbon coating is expected not only to lower the SEY but also Y_{ph}, further improving the vacuum quality

$$Q_{ESD} = (\eta_e + \eta_e') \dot{N}_e kT$$

As long as the SEY is effectively mitigated, the ESD is expected to be relegated to a secondary role, representing around 10% of the total gas load. In the LHC, it is estimated to represent 90%

For dipoles with 25 ns of bunch spacing, where there are no so strict SEY requirements (< 1.5), it is possible to use scrubbed copper in the main chamber without any further SEY mitigation treatment. Nevertheless, it would imply an ESD outgassing two times higher than using LASE

Using LASE on the sawtooth finishing would lower N_e in the inner chamber

LASE and Cu SEY comparison

R. Valizadeh, O. Malyshev et al.

For additional information, see L. Mether’s presentation in this conference, *Electron Cloud*
ION STIMULATED DESORPTION

- The ions generated by the beam ionization are repelled by the positive potential and desorb gas upon colliding with the chamber’s wall.
- The maximum beam currents to avoid a pressure overrun have been found.
- Thanks to the high pumping speed of the BS and the short interconnect, the ISD gas load is minor.

\[
I_c (A, B^+) = \frac{C_A e}{\eta_{A,B^+} \sigma_B} \quad \Delta n (\%) = \frac{100 I}{I_c - I}
\]

| Infinitely long tube, two gases system at He = 40 K |
| --- | --- | --- | --- |
| Area | H₂ + CO | \(\Delta n\) | CO + CO₂ | \(\Delta n\) |
| Magnet BS | 37 A | 1.4 % | 19 A | 2.7 % |

| Length w/o BS between BS’s, two gases at He = 40 K |
| --- | --- | --- | --- | --- |
| Area | H₂ + CO | \(\Delta n\) | CO + CO₂ | \(\Delta n\) |
| Interconnect | 12.8 A | 4.1 % | 6.8 A | 7.9 % |

\[
L_{\text{max}} \approx \pi \sqrt{\frac{ue}{\sigma_i l \eta_{i+}}} \quad u \approx \frac{A \cdot d}{3} \sqrt{\frac{8RT}{\pi M}}
\]

| Interconnect maximum length at 40 K |
| Gas | H₂ | CO | CO₂ | CH₄ |
| Max length | 18.6 m | 2.0 m | 2.2 m | 9.0 m |

- MB interconnect, with 0.4m without active pumping.
- 1.9 K Cold bore
- 0.4 m
- 40-60 K BS
- RF fingers
- The ions generated by the beam ionization are repelled by the positive potential and desorb gas upon colliding with the chamber’s wall.
- The maximum beam currents to avoid a pressure overrun have been found.
- Thanks to the high pumping speed of the BS and the short interconnect, the ISD gas load is minor.
Beam induced vacuum effects

1. General expression
2. Synchrotron radiation in the FCC-hh. 160 times higher linear power density
3. Photon stimulated desorption
4. Electron stimulated desorption
5. Ion stimulated desorption

The FCC-hh beam screen

6. Main features. Functional map
7. Comparison with the LHC BS

Molecular density results, conclusions and future work
THE FCC-hh BEAM SCREEN

The FCC-hh beam screen has been designed with a series of new features to reduce the impedance and mitigate the beam induced effects:

- A **double chamber layout**, hiding the pumping holes from the direct sight of the beam. Apart from neglecting the holes contribution to the total impedance budget, it prevents the SR to directly hit the cold mass and lowers the SR reflected towards the inner chamber.

- An **SEY mitigation solution**, LASE/a-carbon, which lowers the electron density in the beam’s path and improves the vacuum quality.

- An **improved sawtooth finishing**, aiming to lower the residual **gas density**, the SR reflectivity and the electron cloud seeds in the inner chamber.

See M. Morrone’s presentation in this conference, *Update of the design and thermomechanical study of the FCC-hh beam screen* for more information about the mechanical design.
FCC-hh BS FUNCTIONAL MAP

FUNCTION

1. Increase the collider’s cooling efficiency
2. Avoid development of transverse resistive wall instability
3. Resist eddy-current forces during magnet quench
6. Preserve magnetic field quality
5. Avoid development of e-cloud
4. Keep the gas density low

PROCESS

Limit heat load on the 1.9 K cold mass from all sources
Limit resistive wall impedance
Highly resistive, structural material
Low permeability materials
Limit synchrotron radiation scattering
Maximize pumping speed

DESIGN FEATURE

Beam screen held at 40 K - 60 K
Low-conduction support sets
P506 steel
Double chamber layout
LASE/a-carbon coating on inner chamber
Sawtooth treatment on secondary chamber
Pumping holes

Updated from P. Lebrun et al. ICEC 2012
At the expense of a higher complexity (translated into a higher, but still affordable, cost) the beam induced vacuum effects are mitigated and the pumping speed and cooling capacity have been considerably increased.
OUTLINE

Beam induced vacuum effects

1. General expression
2. Synchrotron radiation in the FCC-hh. 160 times higher linear power density
3. Photon stimulated desorption
4. Electron stimulated desorption
5. Ion stimulated desorption

The FCC-hh beam screen

6. Main features. Functional map
7. Comparison with the LHC BS

Molecular density results, conclusions and future work
MOLECULAR DENSITY EVOLUTION

\[n = \frac{P}{kT} = \frac{Q}{SkT} = \frac{(\eta_{ph} + \eta'_{ph}) \dot{r}_{ph} + (\eta_e + \eta'_e) \dot{r}_e + (\eta_i + \eta'_i) \sigma \frac{l}{e} n + Aq}{S} \]

- For **50 TeV and 500 mA**, the gas density in the arcs is expected to be below the requirement of \(10^{15} \text{H}_2\text{eq.}/\text{m}^3\) within 80 Ah. The current shall be kept lower than 500 mA before the BS is conditioned to keep the lifetime above 100 h.

- \(\text{H}_2\) would be the **most abundant** gas species, whilst \(\text{CO}\) would be the one with the **highest impact on beam lifetime**.
Several experimental inputs shall be acquired to increase the accuracy and reliability of the computational models.

BESTEX set-up is expected to acquire η_{ph} at 77 K, $\varepsilon_c = 4.3 - 6.2$ keV, for copper, Cu LASE and sawtooth. These data, representing 80% of the total gas load, will be directly used to refine the models.

The properties and exact specifications of LASE or a-carbon shall be properly studied. Currently, the studied laser treatment presents a large safety margin on the SEY, but there are many unknowns about its surface resistance. This treatment is specially interesting for the vacuum system owing to its low cost and high potential in reducing the gas load and photoelectron generation inside the beam screen. The carbon coating is being studied in parallel in the framework of the HL-LHC project.

A dedicated experiment to measure the recycling effect (η'_{ph}) of the gas condensed on the cold bore, for low photon doses, and η_e of the BS materials, shall also be carried out, owing to the lack of literature data.

Detailed e-cloud studies should be carried out in the interconnect region taking into account the residual magnetic field. The optimal location of the SEY mitigation treatments in this region should be defined.

BESTEX set-up with the latest BS inserted for measuring. See L. A. González’s presentation in this conference, *Photodesorption Studies on FCC-hh Beam Screen Prototypes at KARA*.
A new beam screen has been proposed for the FCC-hh. It is intended to overcome the challenges derived from the increase of beam energy, from the 7 TeV of the LHC up to the 50 TeV of the FCC-hh, which raises the linear power density from 0.22 W/m up to 35.4 W/m.

The impact of the beam induced vacuum effects on the beam vacuum level of the FCC-hh has been assessed. It is concluded that, despite the much higher synchrotron radiation power and beam screen temperature, the proposed vacuum system shall be adequate. The conditioning time needed to run the collider with baseline beam parameters and above 100 h of nuclear scattering lifetime is acceptable, i.e. lower than 80 Ah, equivalent to around 4 months of escalated commissioning.

These favorable previsions would be possible thanks to the new beam screen geometry, which features a pumping speed more than four times higher than the one of the LHC, and on the other hand, thanks to the expected SEY mitigation, relegating ESD to a minor cause of gas release.

That being said, despite the good forecasts, the high uncertainty of these estimations derived from the lack of data in the literature leaves these results as mere tentative. To completely assess the viability of the proposed FCC-hh vacuum system, dedicated experiments will have to be carried out in the future as those proposed at KARA light source (see L. A. González’s talk, this conference).
THANK YOU FOR YOUR ATTENTION
Study on the beam induced vacuum effects in the FCC-hh

Ignasi Bellafont
FCC Week
June 26th 2019

Contributions from L. Mether

The European Circular Energy-Frontier Collider Study (EuroCirCol) project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant No 654305. The information herein only reflects the views of its authors and the European Commission is not responsible for any use that may be made of the information.