Challenges for EW b physics measurements

Fabrizio Palla INFN Sezione di Pisa

Introduction

 Couplings of b-quarks to Z bosons through partial widths and forwardbackward asymmetry sensitive to specific radiative corrections and possibly new physics

$$\Gamma_{\mathsf{q}\neq\mathsf{b}}$$
 $\stackrel{\mathsf{e}^{\mathsf{r}}}{\underset{\mathsf{e}^{\mathsf{+}}}{\bigvee}}$ $\stackrel{\mathsf{e}^{\mathsf{r}}}{\underset{\mathsf{e}^{\mathsf{+}}}{\bigvee}}$ $\stackrel{\mathsf{e}^{\mathsf{r}}}{\underset{\mathsf{f}}{\bigvee}}$ $\stackrel{\mathsf{e}^{\mathsf{r}}}{\underset{\mathsf{f}}{\bigvee}}$ $\stackrel{\mathsf{e}^{\mathsf{r}}}{\underset{\mathsf{f}}{\bigvee}}$

$$\Gamma(Z^{0} \to q\overline{q}) = \frac{G_{\mu}M_{Z}^{3}}{8\pi\sqrt{2}} \left(v_{q}^{2} + a_{q}^{2}\right) \quad \text{Born}$$

$$v_{q} = (1 + \delta\rho)\left(-1 + 4Q_{q}\sin^{2}\theta_{\text{eff}}^{q}\right)$$

$$a_{q} = -(1 + \delta\rho) \quad \text{radiative corrections}$$

$$\Gamma_{b} = \frac{e^{-}}{e^{+}} + \frac{e^{-}}{t} = \frac{f}{t} + \frac{e^{-}}{t} = \frac{f}{t} =$$

$$v_b \to v_b \left(1 + \frac{4}{3} \delta \rho \right)$$

$$a_b \to a_b \left(1 + \frac{4}{3} \delta \rho \right)$$

b-quark specific

Introduction

	Measured	Theory prediction	Pull
R_b	0.21629 ± 0.00066	0.21582 ± 0.00002	0.7
R_c	0.1721 ± 0.0030	0.17221 ± 0.00003	0.0
$A_{FB}^{(0,e)}$	0.0145 ± 0.0025	0.01618 ± 0.00006	-0.7
$A_{FB}^{(0,\mu)}$	0.0169 ± 0.0013		0.6
$A_{FB}^{(0, au)}$	0.0188 ± 0.0017		1.5
$A_{FB}^{(0,b)}$	0.0992 ± 0.0016	0.1030 ± 0.0002	-2.3

$$R_{b} = \frac{\Gamma_{b}}{\Gamma_{Z \to hadrons}} = R_{d} \left[1 - \frac{20}{13} \frac{\alpha}{\pi} \left(\frac{m_{t}^{2}}{M_{Z}^{2}} + \frac{13}{6} \log \frac{m_{t}^{2}}{M_{Z}^{2}} \right) \right] \sim R_{d} \left(1 - 0.02 \right)$$

Statistics

- LEP experiments (ALEPH, DELPHI, L3, OPAL) and SLD at SLC ~15 +0.4
 Million hadronic Z decays
- Expected statistics at FCC-ee ~ 3 Tera hadronic Z decays FCC-ee

	$Z \to q \overline{q}$		LEP		
Year	A	D	L	O	LEP
1990/1991	433	357	416	454	1660
1992	633	697	678	733	2741
1993	630	682	646	649	2607
1994	1640	1310	1359	1601	5910
1995	735	659	526	659	2579
Total	4071	3705	3625	4096	15497

FCC-ee

working point	luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	total luminosity (2 IPs)/ yr	physics goal	run time [years]
Z first 2 years	100	26 ab ⁻¹ /year	150 ab ⁻¹	4
Z later	200	52 ab ⁻¹ /year		

R_b: tagging methods

- Leptons: $B(b\rightarrow \mu/e)\sim 10\%$
- Lifetime ($\tau_B \sim 1.6 \text{ ps} \sim 500 \mu\text{m}$)
 - impact parameter
 - secondary vertex displacement
- Mass (m_B~ 5.3 GeV)
 - invariant mass of secondary vertex
 - event shapes
- Double tagging techniques
 - N tags:
 - N(N+1)/2 double tag fractions
 - N single tag fractions
 - 3N efficiencies
 - N(N+1)/2 correlations

 multivariate analysis could benefit reducing the impact of correlations, and measure a few of them

Detectors and b-tag performances

- Tracking resolutions (best from SLD)
 - impact parameter $r\phi$ 7.7 μ m \oplus 33 μ m /(p sin θ ^{3/2})
 - impact parameter z 9.6 μm
 - beam 3μ m x 700 μ m
- FCC-ee
 - impact parameter $r\phi$ 3 μ m \oplus 15 μ m /(p $sin\theta^{3/2}$)
 - impact parameter z 9.6 μm
 - beam 6 μm x 420 μm
- Impact parameter resolution a factor 2 better
 - SLD PV z resolution 17 μ m for b, 10 μ m for charm and uds
 - FCC-ee PV resolution $\sim 9 \mu m$ and $5 \mu m$ respectively
- Lifetime-mass tagging efficiencies for SLD (should be better at FCC-ee)
 - 60% (b), 1% (c), 0.1% (uds)

Vertex detector characteristics and experimental resolutions

	ALEPH	DELPHI	L3	OPAL	SLD
Number of layers	2	3	2	2	3
Radius of layers (cm)	6.5/11.3	6.3/9/11	6.2/7.7	6.1/7.5	2.7-4.8
$R\phi$ imp. par. res. (μ m)	25 ^a	20	30	16	8
z imp. par. res. (µm)		30	100	35	10
Primary vertex res.	58 × 10	60×10	77 × 10	80 × 12	4×4
$x \times y \times z$ (µm)	×60	×70	×100	×85	×17

Uncertainties

1.6

$$N_{\text{single}}^{b} = 2N_{Z} \left[R_{b} \varepsilon_{b} + R_{c} \varepsilon_{c} + \left(1 - R_{b} - R_{c} \right) \varepsilon_{uds} \right]$$

$$N_{\text{double}}^{b} \sim N_{Z} \left[R_{b} \varepsilon_{b}^{2} \left(1 + \rho_{b} \right) + R_{c} \varepsilon_{c}^{2} + \left(1 - R_{b} - R_{c} \right) \varepsilon_{uds}^{2} \right]$$

$N_{\text{double}} \sim N_Z$	$\left(\left[R_b \mathcal{E}_b \left(1 + \rho_b \right) + R_c \mathcal{E}_b \right] \right)$	$c + (1 - K_b -$
Source	R _b ⁰ [10 ⁻³]	$A_{\mathrm{FB}}^{0,\mathrm{b}}$ [10 ⁻³]
Statistics	0.44	1.5

Source	$R_{\rm b}^{0}$ [10 ⁻³]	A _{FB} ^{0, b} [10 ⁻³
Statistics	0.44	1.5
Internal systematics	0.28	0.6
QCD effects	0.18	0.4
$B(D \rightarrow \text{neut.})$	0.14	0
D decay multiplicity	0.13	0
B decay multiplicity	0.11	0
$B(D^+ \rightarrow K^-\pi^+\pi^+)$	0.09	0
$B(D_s \to \phi \pi^+)$	0.02	0
$B(\Lambda_{\rm c} \to {\rm p~K^-}\pi^+)$	0.05	0
D lifetimes	0.07	0
B decays	0	0.1
Decay models	0	0.1
Non-incl. mixing	0	0.1
Gluon splitting	0.23	0.1
c Fragmentation	0.11	0.1
Light quarks	0.07	0
Beam polarisation	0	0
Total correlated	0.42	0.4

0.66

$rac{\Delta R_b}{R_b} \sim$	Δho_b	
	$-2\frac{\Delta \varepsilon_c}{\varepsilon}$	
R_b	$\mathbf{\epsilon}_{b}$	Λ_b

Statistical error scales $\sim 1/arepsilon_{ m b}^2$

Correlation (taken from MC) due to:

- detector inhomogeneities [checked with data]
- common primary vertex in case of i.p. based taggers, not important for SV
- kinematic correlations
 - momentum dependent efficiency
 - (hard) gluon radiation

Large b-tagging efficiencies reduce correlations

Uncertainty due to B (and C) physics affect correlation

• lifetimes, decay multiplicity, fractions, fragmentation

Charm and uds tag efficiencies from MC

Uncertainties due to physics and modelling (see next) Impact proportional to the charm and uds tag efficiencies

Total error

Experimental parameters Table 5.4 The most important external parameters used in the heavy flavour and the 2-3 better.

The most important external parameters used in the neavy havour and uses	
Error source	Used range
Error source $ \langle x_E \rangle_b \\ \langle x_E \rangle_c $ Choice of b fragmentation function Choice of c fragmentation function	0.702 ± 0.008 0.484 ± 0.008 See Section 5.6.1 See Section 5.6.1
$B(b \to \overline{c} \to \ell^-)$ $B(b \to \tau^- \to \ell^-)$ $B(b \to (J/\psi, \psi') \to \ell\ell)$ Semilept. model $b \to \ell^-$ Semilept. model $c \to \ell^+$ $B \to D$ model	(1.62 $^{+0.44}_{-0.36}$)% Already better now, (0.419 \pm 0.055)% Will improve with BESIII and Belle2 (0.072 \pm 0.006)% ACCMM ($^{+ISGW}_{-ISGW**}$) (Section 5.6.6) ACCMM1 ($^{+ACCMM2}_{-ACCMM3}$) (Section 5.6.6) Peterson $\epsilon = 0.42 \pm 0.07$
$\begin{array}{c} \begin{array}{c} \mathbf{D^0 \ lifetime} \\ \mathbf{D^+ lifetime} \\ \mathbf{D_s \ lifetime} \\ \mathbf{A_c^+ \ lifetime} \\ \mathbf{B \ lifetime} \end{array} \\ \begin{array}{c} \begin{array}{c} \Delta R_b \\ \hline R_b \end{array} \sim -2 \frac{\Delta \epsilon_c}{\epsilon_b} \frac{R_c}{R_b} \end{array}$	$ \begin{array}{r} 0.415 \pm 0.004 \text{ps} \\ 1.057 \pm 0.015 \text{ps} \\ 0.467 \pm 0.017 \text{ps} \\ 0.206 \pm 0.012 \text{ps} \\ 1.576 \pm 0.016 \text{ps} \end{array} $ $ \begin{array}{r} \pm 0.0015 \text{ps} \\ \pm 0.004 \text{ps} \\ \pm 0.006 \text{ps} \\ \pm 0.006 \text{ps} \end{array} $
$ \frac{B(D^{0} \to K^{-}\pi^{+})}{B(D^{+} \to K^{-}\pi^{+}\pi^{+})} $ $ \frac{B(D^{+} \to K^{-}\pi^{+}\pi^{+})}{B(D^{+}_{s} \to \phi\pi^{+})} $ $ \frac{B(D^{+}_{s} \to K^{\star 0}K^{+})}{B(D^{+}_{s} \to \phi\pi^{+})} $ $ \frac{B(D^{+}_{s} \to K^{\star 0}K^{+})}{B(A_{c} \to pK^{-}\pi^{+})} $	$0.0385 \pm 0.0009 \pm 0.00031$ $0.090 \pm 0.006 \pm 0.0016$ $0.036 \pm 0.009 \pm 0.004$ 0.92 ± 0.09 Belle $0.050 \pm 0.013 \pm 0.0032$
B charged decay multiplicity D charged decay multiplicity D neutral decay multiplicity	4.955 ± 0.062 See Section 5.6.3 See Section 5.6.3 Can improve with BESIII and Belle2
$g \to c\bar{c}$ per multi-hadron $\rightarrow b\bar{b}$ per multi-hadron $\rightarrow k\bar{b} \sim -2 \frac{\Delta \varepsilon_{uds}}{R_{uds}} \frac{R_{uds}}{R_{uds}}$	$(2.96 \pm 0.38)\%$ Can be better measured at FCC-ee
Rate of long-lived light hadrons R_b ε_b R_b Light quark fragmentation QCD hemisphere correlations	Tuned JETSET ± 10% (Section 5.6.8) See Section 5.6.8 See Section 5.6.7

"Measuring" the correlation

- Compare "components" of correlations in data and MC
 - usually the correlation decreases if efficiency is large or flat in the variable

$$\epsilon_{\nu} \equiv \int E(\nu) \cdot F(\nu) \, d\nu \qquad \rho_{\nu} = \frac{\epsilon_{\nu} - \epsilon_{b}}{\epsilon_{b}}$$

E(v) = Efficiency to tag vs variable v

F(v) = Biased distribution of variable vafter tagging the opposite hemisphere

- Require hermetic detector coverage
- Design a tagger using (using several tag variables in a NN) to flatten out the efficiency vs momentum

Role of b-tagging

- Thanks to the better performance of the detector one could achieve a better rejection of light-quark and charm background with an efficiency of ~60%.

Statistical error ~0.3 10⁻⁶ with 60% b-tagging efficiency

• Going down to ~30% one could extrapolate a 5 times smaller charm efficiency, for a total of ~99.5% purity, and a stat error ~0.8 10⁻⁶ thanks to a charm impact 5 times smaller.

The However the correlation is larger for smaller efficiency AR, ϵ AR

- The efficiency $\Delta R_b \sim -2 \frac{\varepsilon_c}{\varepsilon_b} \Delta R_c$ hence reducing charm efficiency is beneficial
- Must find a trade off between statistical and systematic error
- Extrapolating from the current sensitivity, one could go to $50-100 \times 10^{-6}$ (10 times better than now!)

What about Theory?

Central EW precision (pseudo-)observables at the Z pole

FCC-ee: update of Blondel et al., 1901.02648 (in prep.); ILC: Moortgat-Pick et al., 1504.01726

	experim	ental	accuracy	intrir	nsic theory unce	rtainty	parameti	ric unc.
	current	ILC	FCC-ee	current	current source	prospect	prospect	source
$\Delta M_{ m Z} [{ m MeV}]$	2.1	_	0.1					
$\Delta \Gamma_{ m Z} [{ m MeV}]$	2.3	1	0.1	0.4	$lpha^3, lpha^2 lpha_{ m s}, lpha lpha_{ m s}^2$	0.15	0.1	$lpha_{ m s}$
$\Delta \sin^2 \theta_{ m eff}^{\ell} [10^{-5}]$	23	1.3	0.6	4.5	$\alpha^3,\alpha^2\alpha_{\rm s}$	1.5	2(1)	$\Delta lpha_{ m had}$
$\Delta R_{\mathrm{b}}[10^{-5}]$	66	14	6	11	$\alpha^3,\alpha^2\alpha_{\rm s}$	5	1	$lpha_{ m s}$
$\Delta R_{\ell}[10^{-3}]$	25	3	1	6	$\alpha^3,\alpha^2\alpha_{\rm s}$	1.5	1.3	$lpha_{ m s}$

Theory requirements for Z-pole pseudo-observables:

- - \diamond 1 \rightarrow 2 decays, fully inclusive
- problems: \diamond technical: massive multi-loop integrals, γ_5
 - ⋄ conceptual: pseudo-obs. on the complex Z-pole
- → Enormous challenge, but feasible (anticipating progress + support!)

Stefan Dittmaier, Precision Electroweak Calculations Symposium on the European Strategy, Granada, May 2019 - 8

Forward-Backward asymmetry A_{FB}(b)

 Fit of F-B asymmetry as a function of the scattering angle

$$A_{\text{FB}}^{q\overline{q}} = \frac{\sigma_{\text{F}}^{q} - \sigma_{\text{B}}^{q}}{\sigma_{\text{F}}^{q} + \sigma_{\text{B}}^{q}}, \qquad \qquad \frac{\text{d}\sigma^{q}}{\text{d}\cos\theta} = \sigma_{\text{tot}}^{q} \left[\frac{3}{8} (1 + \cos^{2}\theta) + A_{\text{FB}}^{q\overline{q}} \cos\theta \right] \qquad A_{\text{FB}}^{q\overline{q}} (\cos\theta) = \frac{8}{3} A_{\text{FB}}^{q\overline{q}} \frac{\cos\theta}{1 + \cos^{2}\theta} = \mathcal{A}_{\text{e}} \mathcal{A}_{\text{q}} \frac{2\cos\theta}{1 + \cos^{2}\theta} = \mathcal{A}_{\text{e}} \mathcal{A}_{\text{q}} \frac{2\cos\theta}{1 + \cos^{2}\theta}$$

- At SLD, given the polarised beam they measured directly Aq
- Ingredients
 - Tag quark-flavour (b-quark)
 - b-tagging as for R_b
 - Identification of quark vs anti-quark
 - charge of the leptons, jet-charge, vertex-charge, kaons
 - Determine the quark direction (9)
 - Use the "thrust" axis
 - ⇒sensitive to QCD effects

quark vs anti-quark tagging

- Leptons
 - direct (b→I) versus cascade (b→c→I).

 - sensitive to effective B mixing.
 uncertainties on sample composition from mode decays are large.
- Jet and secondary vertex charge

$$Q_h = \frac{\sum_i q_i p_{\parallel i}^{\kappa}}{\sum_i p_{\parallel i}^{\kappa}}$$

- At SLD thanks to its superior tracking performance use secondary vertex charge
- Use double tagging techniques in a pure sample of b-quarks to estimate charge tagging mistake (otherwise limited by fragmentations and Bdecays if taken from MC)
 - fraction of same sign double tags: 2 w*(1-w)

A_{FB}(b) precision

Current precision is limited by statistics

$$\Delta A = \sqrt{\frac{1 - A^2}{N}}$$

- At LEP+SLD 1.5x10-3
 - Statistical error at FCC-ee will be ~ 1000 times smaller, hence 1.5 10^{-6}
 - internal systematics (detector) 0.6x10⁻³ mostly statistical
 - Could be reduced by at least a factor ~2 at FCC-ee e⁻

⇒Can be reduced by ~2 at FCC-ee?

At FCC-ee: $\Delta A_{FB}(b) \sim \pm O(10^{-4})$ (systematic dominated)

(d) Thrust forward, quark backward

$$(A_{\text{FB}}^{q\overline{q}})_{\text{meas}} = (1 - C_{\text{QCD}})(A_{\text{FB}}^{q\overline{q}})_{\text{no QCD}}$$

Error on C _{QCD} ^{had,T}	b b
Higher orders [192]	0.0025
Mass effects [140]	0.0015
Higher order mass [192]	0.005
$\alpha_s = 0.119 \pm 0.003$	0.0012

Other methods to measure $A_{FB}(b)$

Could use exclusive B decays

- Likewise we did for charm using D*
- Some BR:
 - BR $(B^+ \to D^\circ (K\pi) \pi^+) \sim 16 \times 10^{-5}$
 - BR (B⁺ \rightarrow D°(K⁻ π ⁺ π °) π ⁺)~56x10⁻⁵
 - BR $(B^+ \to D^\circ (K^- 2\pi^+\pi^-) \pi^+) \sim 32 \times 10^{-5}$
 - BR $(B^+ \rightarrow K^{*0}(892)\pi^+) \sim 10^{-5}$
 - BR $(B^0 \rightarrow K^+\pi^-) \sim 2 \times 10^{-5}$
 - BR (B° \to D-(K+2 π -) π +)~23x10-5
 - BR $(B^{\circ} \rightarrow D^{-}(K^{+}2\pi^{-}\pi^{\circ})\pi^{+}) \sim 15 \times 10^{-5}$
 - Plus many more decay modes

- With 10^{12} B⁺ (and B⁰) and assuming a conservative 10% efficiency one could have few 108 reconstructed events
 - stat error <10⁻⁴
 - potential smaller systematics

Conclusions

- The incredible statistics foreseen to be collected at FCC-ee will allow unprecedented precision in measuring the electroweak b-physics parameters by at least one order of magnitude better than the current ones
 - Both R_b and A_{FB}(b) will be limited by systematics
 - ΔR_b (x 10⁻⁶) ~±0.3 (stat) ± 60 (syst)
 - $\Delta A_{FB}(b)$ (x 10⁻⁶) ~± 1.5 (stat) ± 100 (syst)
 - Theory error for R_b is expected to reach 50 x 10⁻⁶
- Any hint of new physics could emerge already from early FCC-ee operations!

Introduction

$$\Gamma(Z^0 \to q\bar{q}) = \frac{G_{\mu}M_Z^3}{8\pi\sqrt{2}} \left(v_q^2 + a_q^2\right)$$

Born

$$\mathbf{v}_q = (1 + \delta \rho) \left(-1 + 4Q_q \sin^2 \theta_{\text{eff}}^q \right)$$

radiative corrections

$$\mathbf{a}_q = -(1 + \delta \rho)$$

$$v_b \to v_b \left(1 + \frac{4}{3} \delta \rho \right)$$

$$a_b \to a_b \left(1 + \frac{4}{3} \delta \rho \right)$$

b-quark specific

$$R_{b} = \frac{\Gamma_{b}}{\Gamma_{Z \to hadrons}} = R_{d} \left[1 - \frac{20}{13} \frac{\alpha}{\pi} \left(\frac{m_{t}^{2}}{M_{Z}^{2}} + \frac{13}{6} \log \frac{m_{t}^{2}}{M_{Z}^{2}} \right) \right] \sim R_{d} \left(1 - 0.02 \right)$$

$$A_{FB}(b) = \frac{3}{4} A_e A_b$$

$$A_q = 2 \frac{\mathbf{v}_b \mathbf{a}_b}{\mathbf{v}_b^2 + \mathbf{a}_b^2}$$

	Measured	Theory prediction	Pull
R_b	0.21629 ± 0.00066	0.21582 ± 0.00002	0.7
R_c	0.1721 ± 0.0030	0.17221 ± 0.00003	0.0
$\begin{array}{c} R_c \\ A_{FB}^{(0,e)} \end{array}$	0.0145 ± 0.0025	0.01618 ± 0.00006	-0.7
$A_{FB}^{(0,\mu)}$	0.0169 ± 0.0013		0.6
$A_{FB}^{(0, au)}$	0.0188 ± 0.0017		1.5
$A_{FB}^{(0,b)}$	0.0992 ± 0.0016	0.1030 ± 0.0002	-2.3

How the measurement is effectively done ...

$$\langle Q_{\rm FB} \rangle = \langle Q_{\rm F} - Q_{\rm B} \rangle = \delta_{\rm q} A_{\rm FB}^{\rm q\bar{q}},$$

$$\delta_{\rm q} = \langle Q_{\rm q} - Q_{\bar{\rm q}} \rangle, \tag{5.16}$$

for a pure sample of $q\bar{q}$ -events. The "charge separation" δ_q can be measured from data using: 19

$$\left(\frac{\delta_{\mathbf{q}}}{2}\right)^{2} = \frac{\langle Q_{\mathbf{F}} \cdot Q_{\mathbf{B}} \rangle + \rho_{\mathbf{q}\overline{\mathbf{q}}} \sigma(Q)^{2} + \mu(Q)^{2}}{1 + \rho_{\mathbf{q}\overline{\mathbf{q}}}},\tag{5.17}$$

where $\mu(Q)$ is the mean value of Q for all hemispheres and $\sigma(Q)$ is its variance. $\mu(Q)$ is slightly positive due to an excess of positive particles in secondary hadronic interactions. The hemisphere correlations, $\rho_{q\overline{q}}$, arise from charge conservation, hard gluon radiation and some other small effects and have to be taken from simulation.

DELPHI

Table 14. Detailed error breakdown for the measurement of $R_{\rm b}$ from the multivariate analysis for the combined result

Source of error	Range	$\Delta R_{\rm b} \times 10^4$
Data statistics		±6.7
Simulation statistics		± 3.3
Event selection		± 0.9
Tracking		± 1.3
K^0 , Λ^0 , photons, etc.	see text	± 0.4
Gluon splitting $g \to c\bar{c}$	$(2.33 \pm 0.50)\%$	± 0.8
Gluon splitting $g \to b\bar{b}$	$(0.269 \pm 0.067)\%$	± 2.7
D ⁺ fraction in cc̄ events	0.233 ± 0.027	± 1.2
D_s fraction in $c\bar{c}$ events	0.103 ± 0.029	± 0.3
c-baryon fraction in $c\bar{c}$ events	0.063 ± 0.028	± 1.2
$BR(D^0 \to no neutrals)$	$(14.1 \pm 1.1)\%$	± 0.6
$BR(D^0 \to 1 neut., \ge 2 charged)$	$(37.7 \pm 1.7)\%$	± 0.3
$BR(D^+ \to no neutrals)$	$(11.2 \pm 0.6)\%$	± 0.5
$BR(D^+ \to 1 neut., \ge 2 charged)$	$(26.1 \pm 2.3)\%$	± 0.2
$BR(D_s \to K^0 X)$	$(33 \pm 18)\%$	± 1.2
D^0 lifetime	$0.415\pm0.004~\mathrm{ps}$	± 0.3
D ⁺ lifetime	$1.057\pm0.015~\mathrm{ps}$	± 0.3
D_s lifetime	$0.447 \pm 0.017~\mathrm{ps}$	± 0.3
$\Lambda_{\rm c}$ lifetime	$0.206\pm0.012~\mathrm{ps}$	± 0.0
D decay multiplicity	see [18]	± 0.8
$\langle x_E({ m c}) angle$	0.484 ± 0.008	± 0.5
Two b's same hemisphere	$\pm 30\%$	± 0.5
$\langle x_E(\mathrm{b}) angle$	0.702 ± 0.008	± 1.2
B decay multiplicity	4.97 ± 0.07	± 0.9
Average B lifetime	$1.55~\pm 0.05~\mathrm{ps}$	± 0.0
Angular effects	see text	± 0.9
Gluon radiation	see text	±2.2
Total systematic error		± 6.0

SLD

	$\delta R_b(10^{-5})$	$\delta R_c(10^{-5})$
MC statistics	13	91
$g \to b\overline{b} \ 0.254 \pm 0.051\%$	-24	9
$g \rightarrow c\overline{c} \ 2.96 \pm 0.38\%$	-23	-101
long lived light hadron prod. ± 10%	-1	-1
D^+ production 0.233 \pm 0.028	-10	-6
D_s production 0.102 \pm 0.037	-11	-15
c-baryon production 0.065 ± 0.029	-11	22
charm fragmentation	-18 18	
D^0 lifetime 0.415 ± 0.004 ps	-3	8
D^{+} lifetime 1.057 \pm 0.015 ps	-2	5
D_s lifetime 0.467 ± 0.017 ps	-3	-3
Λ_c lifetime 0.206 \pm 0.012 ps	-1	-91
D decay multiplicity	-27	60
D decay K ⁰	19	56
D decay no- π^0	-9	12
B lifetime ± 0.05 ps	0	5
$B \operatorname{decay} \langle N_{ch} \rangle = 5.73 \pm 0.35$	-20	3
b fragmentation	4	26
Λ_b production fraction 0.074 \pm 0.030	5	-2
QCD hemisphere correlation	6	22
hard gluon radiation	-2	26
tag geometry dependency	9	17
tag time dependency	1	1
component correlation	14	45
tracking resolution	27	22
tracking efficiency	13	3
$\langle IP \rangle_{xy}$ tail	2	0
event selection bias	17	20
4 jet rate in b events	15	0
$R_c = 0.1723 \pm 0.0037$	-12	
$R_b = 0.2157 \pm 0.0010$		-62
Total (excl. $R_{b/c}$)	73	200

TABLE IV. Hemisphere correlation component check results

Component	$(C_{b-{\rm tag}}-1)\times 10^5$		
•	97–98	96	
Primary vertex	+46	+13	
Geometrical correlation θ	+49	+60	
Geometrical correlation ϕ	-4	+212	
Time dependence	11	+434	
B/D momentum and thrust angle	+107	+95	
Hard gluon radiation	-37	-23	
Component sum	+170	+670	
MC overall correlation	+42	+891	
MC statistical error	±47	±113	SLD
discrepancy	+128	-121	