

Synchrotron radiation Backgrounds for the FCC-hh Experiments

MANUELA BOSCOLO (INFN-LNF)

O. Blanco Garcia (INFN-LNF), F. Collamati (INFN-Roma1) H. Burkhardt, M. Luckhof (CERN)

June 25, 2019 FCC WEEK 2019, Brussels, Belgium

Outline

- FCC-hh IR layout
- Approach/tools
- Evaluation of synchrotron radiation in the IR
- Impact on experiments
- Conclusion

This work is part of the Experimental Insertion Region (WP3) EuroCirCol design study

Task 3.3 dedicated to the study of the impact of synchrotron radiation emitted by protons on detector and machine components in the interaction region.

European Commission

The European Circular Energy-Frontier Collider Study (EuroCirCol) project has received funding from the European Union's Horizon 2020 research and innovation programme under grant No 654305. The information herein only reflects the views of its authors and the European Commission is not responsible for any use that may be made of the information.

Co-funded by the

FCC-hh layout

- Experimental regions: PA, PB, PG, PL (high lumi. PA, PG)
- Injection region: PL, PB
- Extraction region: PD
- Collimation region: PF, PJ
- Radiofrequency: PH
- c.o.m energy 100 TeV proton-proton collisions
- Circumference 97.75 km
- Arc cell: 213 m, 90° FODO, dipole filling factor ~0.8
- Dipole field 16 T, Nb₃Sn-based
- RF frequency 400 MHz
- 30 W/m/aperture due to synchrotron radiation at 50 K in the arcs

FCC-hh parameters

Lattice V9 (CDR)		Initial	Nominal
Beam energy	TeV	50	
Luminosity / IP	10 ³⁴ cm ⁻² s ⁻¹	5	< 30
Optimum average integrated luminosity/day	fb ⁻¹	2.2	8
Beam current	А	0.5	
Bunches per beam	#	1040	00
Average bunch spacing	ns	25	
Bunch population	10 ¹¹	1	
Transverse normalised emittance ϵ_x	μm	2.2	
IP beta function β^*	m	1.1 0.3	
RMS IP spot size: σ^*	μm	6.8	3.5
Full crossing angle	μrad	104	200
Luminous region RMS length	cm	5.7	
Distance IP to first quadrupole L*	m	40	
SR power per ring	MW	2.4	
Arc SR heat load	W/m/aperture	29	
Energy loss per turn	MeV	4.67	
Critical photon energy	keV	4.3	
Longitudinal/transverse emittance damping time	hr	0.5 / 1	

IR optics

(a) Interaction region: LSS-PA-EXP & LSS-PG-EXP

- Design follows the structure of the LHC IR
- small β^* at IP ($\propto 1/VE$): demanding IR optics design & large aperture in final focus triplet
- Challenge for magnet, protection design and collimation system (to intercept tail particles that could hit the triplet)
- 1.4 km required
- Final focus is a triplet (superconducting magnets) with a single aperture followed by normal conducting dipoles that separate the beams in individual aperture
- Design of the final focus system is driven by energy deposition from collision debris from the IP: short drift between IP and quad and large aperture in FF quads
- 20 m reserved for crab cavities

MDISim Toolkit

MDISim is a flexible software toolkit was developed specifically for this study, it is a set of C++/Root classes that allows to: [Ref. MDISim]

- run MADX
- read MADX output
- calculate Synchrotron Radiation, i.e. critical energy, power, ...
- plot photon fans over the geometry using Root's TEve
- import the geometry and SR in Geant4 for the full simulation

SYNRAD+ used as benchmark MDISim (R. Kersevan)

- It is able to **generate** and **trace photons** to calculate flux and power distribution on a surface caused by Synchrotron radiation
- Needs as input the geometry (in CAD-like format), the magnetic fields and the beam parameters

Beam pipe at IR

Beam pipe dimensions and material:

- at IP inner radius 20 mm, 0.8 mm Beryllium
- for ± 8 m from IP with opening angle of 2.5 mrad
- from ± 16 m from the IP to the TAS, the inner radius 40 mm, Aluminum.
- TAS aperture 20 mm
- From the TAS to TAN radius 56 mm
- TAN collimator 29 mm

The goal of the study is to evaluate how much of the synchrotron radiation produced upstream the IR enters the TAS Beam 1 ±8m Beryllium Beam pipe

- Detector ± 25 m
- forward shielding section from ±25m to ±35m
- At 35m from IP the TAS absorbs and protects the FF quads from collision debris (Target Absorber Secondaries, 3 m Copper absorber)

FCC-hh interaction region: top view with MDISim

Upstream the experimental region low field dipoles:

2 T dipoles at 200m and 430m from the IP with bending angle of 135 μrad

only a fraction will pass through the TAS and reach the central chamber: MDISim/G4 simulation performed

Dipole name	Distance from IPA [m]
MBXW.A4LA.H	190.0
MBXW.B4LA.H	202.8
MBXW.C4LA.H	215.6
MBXW.D4LA.H	228.4
MBRW.A4LA.H1	421.3
MBRW.B4LA.H1	434.1
MBRW.C4LA.H1	446.9
MBRW.D4LA.H1	459.7

 $E_{critical} = 0.54 \text{ keV}$ <E> = 0.165 keV Power = 6.4 W per dipole Power = 50 W (total dipoles)

SR that reaches the experimental area

- MDISim used to produce geometry and magnetic field description
- SR simulation with GEANT4 from -700 m from IP, Gaussian proton beam

Lattice v9	half crossing angle	Power (TAS) [W]	Power(Be) [W]	Νγ(Be) [10 ⁹]	Em(Be) [keV]
Initial	Νο	9	1	1	0.2
Initial	yes, 52µrad	27	1.2	2	0.2
Nominal	Νο	9	1	1	0.2
	yes, 100µrad	47	13	16	0.2

• Slight increase of SR with the nominal crossing angle, due to the magnets that are switched on to produce it.

SR photons passing through the TAS

Generation points of SR photon

Corrector name	Distance to IPA [m]	Length [m]	B field [T]	
			Baseline	Ultimate
MCBXDHV.A2LA.H	75.8	1.3	-0.168	-0.562
MCBXCHV.3LA.H	174.2	1.3	1.226	1.957
MCBRDH.4LA.H1	474.0	3.0	-0.821	-1.536

Comment on these results

- During these four years of the EuroCirCol design study we have evaluated the SR into the experiments for the different lattices, following up with the new versions.
- The expectations have always been found to be negligible, both in terms of power load and in number of photons.
- However it is worth mentioning that the outcome of the study is relevant in terms of the software toolkit MDISim, that was started for this EuroCirCol study and then extended to other colliders designs, like now used for the FCC-ee MDI design.

Benchmarking with SYNRAD+

optics used: fcc_hh_v6_45

The differences can be attributed to differences in the vacuum chamber geometry implemented in the two codes.

Beam pipe scheme from MADX

Power No Crossing Angle		Crossin	Crossing Angle		
(W)	MDISim	SynRad	MDISim	SynRad	
B2b	0	0	0	0	
B2a	4,1	0,08	1,2	1E-03	
B1b	0	0	0	4E-05	
B1a	12,8	5,02	24,6	5,75	
Q3	—	0	—	1,24	
Q2b	—	0,139	—	2,19	
Q2a	—	0	—	1E-04	
Q1	—	0,0113	—	e-6	
тот	16,9	5,3	25,8	9,2	
Q1	Q2a Q2b Q3	B1a B1b	ALL	B2a B2b	
82 0 40 75.8 85	116 153 112 143 18	196 233 34 219 231 245		427 475 394 443 m	

Comparison with previous lattices

Lattice_V8 $\beta^* = 0.3 \text{ m and } L^* = 45 \text{ m}, 89 \mu \text{rad crossing angle}$

CrAn.	$\mathbf{N}_{\gamma TAS}$	$\bar{E} \; [\text{keV}]$	\mathbf{P}_{TAS} [W]	$\mathbf{P}_{Be}[\mathbf{W}]$
Yes No	$\begin{array}{c} 2.9\!\times\!10^9 \\ 1.6\!\times\!10^9 \end{array}$	$1.28 \\ 1.38$	$\begin{array}{c} 14.6 \\ 8.6 \end{array}$	$0.8 \\ 0.5$

Spectrum of photons entering the TAS region with (in red) and without the Crossing Angle scheme (in blue).

F Collamati, M. Boscolo, H. Burkhardt and R. Kersevan, 'Synchrotron radiation backgrounds for the FCC-hh experiments' 2017 *J. Phys.: Conf. Ser.* **874** 012004

Conclusion

- The MDISim toolkit was developed on purpose to perform EuroCirCol-Task 3.3-WP3, then also very useful for other colliders design study, i.e. FCC-ee MDI design.
- During this four years of design study we have followed up with the lattice updates evaluating the SR for the new improved lattices.
- We have benchmarked our results with SYNRAD+ finding acceptable agreement.
- The contribution of SR in the experimental area is found to be negligible, including last bends and final focus quads

Conclusion

- The fraction entering the TAS is ~47 W and ~13 W reach the Be chamber.
- The emitted photons are ~10¹⁰ but have a critical energy ~1keV, safely stopped by the Be pipe
- No full simulation into experiments is needed
- Also the non-collisions scheme, with a beam separation at the IP was studied and found to be at a safe limit at 100 W

Lattice v9	half crossing angle	Power (TAS) [W]	Power(Be) [W]	Νγ(Be) [10 ⁹]	Em(Be) [keV]
Initial	No	9	1	1	0.2
Initial	yes, 52µrad	27	1.2	2	0.2
Nominal	Νο	9	1	1	0.2
	yes, 100µrad	47	13	16	0.2

Back-up

Some References

- CERN-ACC-2019-0018 http://cds.cern.ch/record/2655283
- F Collamati et al 2017 J. Phys.: Conf. Ser. 874 012004 (IPAC18)
- EuroCirCol meeting 9-10 Oct. 2017, CERN
- <u>https://indico.cern.ch/event/669849/contributions/2740442/attachments/</u> <u>1537826/2410173/EuroCirColMeeting2017CERN_Collamati.pdf</u>
- EuroCirCol meeting 7-9 Nov. 2016, Alba, Spain <u>https://indico.cern.ch/event/586624/contributions/2363417/attachments/</u> <u>1367160/2071555/EuroCirColMeetingAlba_Collamati.pdf</u>

P @TAS (W)	N _{gamma} @Be	P @ Be (W)	PnoQau ds	NNoQu ads	PBeNo Quads
8,6	1,6E+09	0,5			
8,1	1,0E+09	0,62	7,79	9,9E+08	0,62
8,5	1,1E+09	0,74			

Preliminar result of Power on TAS w/o crossing angle from Before 2016 in blue 2016 in red 2018/oct in green

Synchrotron Radiation

$$E_c = \frac{3}{2} \frac{\hbar c \gamma^3}{\rho} = 2.96 \times 10^{-7} \text{eV m} \frac{\gamma^3}{\rho}$$
$$\langle E_\gamma \rangle = \frac{8}{15\sqrt{3}} E_c \approx 0.308 E_c$$
$$U_0 = \frac{e^2}{3\epsilon_0} \frac{\gamma^4}{\rho} \approx 6.0317 \cdot 10^{-9} \text{ eV m} \quad \frac{\gamma^4}{\rho}$$
$$P_b = \frac{U_0 I_b}{e}$$

mean free path length $\boldsymbol{\lambda}$ between radiation

$$\lambda = \frac{\lambda_B}{B_{\perp}}$$
 where $\lambda_B = \frac{2\sqrt{3}}{5} \frac{mc}{\alpha e} = 0.16183 \,\mathrm{Tm}$
LEP2, TLEP, B \simeq O (0.1 T) O (1 m)

SynRad cone distribution mostly from bending angle O(mrad)

+ minor contribution from beam divergence O(10 μrad) and SynRad process

angular distribution (at Ec) $\sim 1/\gamma = 3 \mu rad @ TLEP$

Spectrum and absorption

Typical mean (0.3 E_c) photon energies

B-factories (and FCC-hh) mostly below 10 keV

LEP1: 21 keV LEP2: 320 keV (arc, last bend 10× lower)

TLEP : ~ 350 keV (arc, 175 GeV)
-> very similar to LEP2
difficult to collimate

Enormous photon flux, MWs of power can get kW locally, melt equipment, detectors..

Aim as for LEP2 : do not generate hard synchrotron radiation anywhere close to the IR

SR flux spectra in arcs

16 T dipoles 50 TeV protons $\gamma \sim 5.e+4$ SR cone = $1/\gamma \sim 20 \mu$ rad (same as 25 GeV electrons)

Critical energy in the arcs $\propto \gamma^3/\rho = 4.3 \text{ keV}$

Beam pipe scheme from MADX

