QED at the Z pole: Challenges

Stanisław Jadach

in collaboration with M. Skrzypek

The Henryk Niewodniczański Institute of Nuclear Physics
Polish Academy of Sciences

June 24-28, 2019

FCC Week 2019, Brussels

*This work is partly supported by the Polish National Science Center grant 2016/23/B/ST2/03927 and the CERN FCC Design Study Programme.
Explaining Master Table of
https://arxiv.org/abs/1903.09895

What are PSEUDO-OBSERVABLEs (POs)?

What is QED-induced uncertainty in PO?

Desired improvement factor for QED!

<table>
<thead>
<tr>
<th>Observable</th>
<th>Where from</th>
<th>Present (LEP)</th>
<th>FCC stat.</th>
<th>FCC syst</th>
<th>Now FCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_Z [MeV]</td>
<td>Z linesh.</td>
<td>$91187.5 \pm 2.1{0.3}$</td>
<td>0.005</td>
<td>0.1</td>
<td>3</td>
</tr>
<tr>
<td>Γ_Z [MeV]</td>
<td>Z linesh.</td>
<td>$2495.2 \pm 2.1{0.2}$</td>
<td>0.008</td>
<td>0.1</td>
<td>2</td>
</tr>
<tr>
<td>$R_l^Z = \Gamma_h/\Gamma_l$</td>
<td>$\sigma(M_Z)$</td>
<td>$20.767 \pm 0.025{0.012}$</td>
<td>$6 \cdot 10^{-5}$</td>
<td>$1 \cdot 10^{-3}$</td>
<td>12</td>
</tr>
<tr>
<td>σ_{had}^0 [nb]</td>
<td>σ_{had}^0</td>
<td>$41.541 \pm 0.037{0.025}$</td>
<td>$0.1 \cdot 10^{-3}$</td>
<td>$4 \cdot 10^{-3}$</td>
<td>6</td>
</tr>
<tr>
<td>N_{ν}</td>
<td>$\sigma(M_Z)$</td>
<td>$2.984 \pm 0.003{0.006}$</td>
<td>$5 \cdot 10^{-6}$</td>
<td>$1 \cdot 10^{-3}$</td>
<td>6</td>
</tr>
<tr>
<td>N_{ν}</td>
<td>$Z\gamma$</td>
<td>$2.69 \pm 0.15{0.06}$</td>
<td>$0.8 \cdot 10^{-3}$</td>
<td>$< 10^{-3}$</td>
<td>60</td>
</tr>
<tr>
<td>$\sin^2 \theta_W^{eff} \times 10^5$</td>
<td>$A_{FB}^{\text{lept.}}$</td>
<td>$23099 \pm 53{28}$</td>
<td>0.3</td>
<td>0.5</td>
<td>55</td>
</tr>
<tr>
<td>$\sin^2 \theta_W^{eff} \times 10^5$</td>
<td>$\langle P_{\tau}\rangle, A_{FB}^{\text{pol,\tau}}$</td>
<td>$23159 \pm 41{12}$</td>
<td>0.6</td>
<td>< 0.6</td>
<td>20</td>
</tr>
<tr>
<td>M_W [MeV]</td>
<td>ADLO</td>
<td>$80376 \pm 33{6}$</td>
<td>0.5</td>
<td>0.3</td>
<td>12</td>
</tr>
<tr>
<td>$A_{FB,\mu}^{M_Z \pm 3.5 \text{GeV}}$</td>
<td>$\frac{d\sigma}{d\cos \theta}$</td>
<td>$\pm 0.020{0.001}$</td>
<td>$1.0 \cdot 10^{-5}$</td>
<td>$0.3 \cdot 10^{-5}$</td>
<td>100</td>
</tr>
</tbody>
</table>

How LEP and FCC-ee exp. precisions do compare?
What are EW pseudo-observables (EWPOs)?

Example of EWPO: σ^0_{had}

Experimental $\sigma_{\text{had}}(s_i)$ measured at 7 energies are fit using 1-D convolution formula

$$\sigma(s) = \int_0^1 dz \sigma^{\text{Born}}(zs) \rho_{\text{QED}}(z)$$

and $\sigma^0_{\text{had}} = \sigma^0_{\text{had}}(M_Z)$ is calculated afterwards! Z Mass and width from the same fit.

Induced QED uncertainty (next slide) enters through ρ_{QED}

Table 2.4: Individual results on Z parameters and their correlation coefficients from the four experiments. Systematic errors are included here except those summarised in Table 2.9.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Correlation Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_Z [GeV]</td>
<td>91.1858 ± 0.0030</td>
<td>1.000</td>
</tr>
<tr>
<td>Γ_Z [GeV]</td>
<td>2.4948 ± 0.0041</td>
<td>0.049</td>
</tr>
<tr>
<td>σ^0_{had}</td>
<td>41.501 ± 0.055</td>
<td>0.031</td>
</tr>
<tr>
<td>R^{γ}</td>
<td>20.901 ± 0.084</td>
<td>0.108</td>
</tr>
<tr>
<td>R^{ρ}</td>
<td>20.811 ± 0.058</td>
<td>0.001</td>
</tr>
<tr>
<td>R^{μ}</td>
<td>20.832 ± 0.091</td>
<td>0.001</td>
</tr>
<tr>
<td>A_{FB}^0</td>
<td>0.0089 ± 0.0045</td>
<td>-0.053</td>
</tr>
<tr>
<td>A_{FB}^μ</td>
<td>0.0159 ± 0.0023</td>
<td>0.077</td>
</tr>
<tr>
<td>A_{FB}^τ</td>
<td>0.0145 ± 0.0030</td>
<td>0.059</td>
</tr>
</tbody>
</table>

Where is QED-induced uncertainty of PO in the landscape of theory and exp. errors?

EXPERIMENT

- Total Error of the experimental pseudo-observable
 - Experimental error
 - Statistical
 - Systematics: detector, backgrounds, accelerator...
 - Systematics: QED, EW, QCD (perturbative h.o., progr. bugs in MCs)

THEORY

- Total Error of the SM prediction
 - Parametric: Error due to input parameters
 - Intrinsic: Theory uncertainties due to perturbative higher orders
 - Error due to input parameters
 - Statistical systematic

CONFRONT

- HERE!
Induced QED error in LEP pseudo-observables?

In LEP experiments QED uncertainty was safely below pure experimental errors
What are EW pseudo-observables (EWPOs)?

Example of charge asymmetry is more complicated:

\[A_{FB}^{\mu,0} = \frac{\int_F d\sigma^{Born} - \int_B d\sigma^{Born}}{\int_F d\sigma^{Born} + \int_B d\sigma^{Born}} \bigg|_{s=M_Z^2} \]

calculated using \[\frac{d\sigma^{Born}(s)}{d \cos \theta} [g_{V}^{\mu}, g_{A}^{\mu}] \]

Eff. Born is central in EWPO construction!

\[\frac{2s}{\pi N_c^2} \frac{d\sigma_{ew}}{d \cos \theta} (e^+e^- \rightarrow ff) = \]
\[\frac{|\alpha(s)Q_i|^2 (1 + \cos^2 \theta)}{\sigma^+} \]
\[-8R \left\{ \alpha(s)Q_i \chi(s) \left[G_{Ve} G_{Vi} (1 + \cos^2 \theta) + 2G_{Ve} G_{Ai} \cos \theta \right] \right\} \]
\[\gamma-Z \text{ interference} \]
\[+16|\chi(s)|^2 \left[|G_{Ve}|^2 + |G_{Ve} A_i|^2 \right] (1 + \cos^2 \theta) \]
\[+8|G_{Ve} G_{Ai} | \Re \left\{ G_{Ve} G_{Ai}^* \cos \theta \right\} \]
\[\sigma^Z \]

with:
\[\chi(s) = \frac{G_F m_Z^2}{8\pi\sqrt{2}} \frac{s}{s - m_Z^2 + i\sigma_Z/m_Z}, \]

\[g_{V,A}^{f} = R(G_{Vf,Af}) \]

\[A_{FB}^{\mu}(s_i), \sigma(s_i) \] are fit to \[A_{FB}^{\mu}(s_i), \sigma(s_i) \] at several \(s_i \) using convolution formula

\[\frac{d\sigma^{\mu}}{d \cos \theta^*}(s, \theta^*) = \text{CONV} \left\{ \frac{d\sigma^{Born}(s)}{d \cos \theta}, \rho_{QED} \right\}, \quad \theta^* \neq \theta \]
What are EW pseudo-observables (EWPOs)?

From experimental DATA to EWPO — effective Born is central object!

Two key points:

1. The convolution formula approximates QED, including (at LEP) \(\mathcal{O}(\alpha^1), \mathcal{O}(L_e^2\alpha^2), \mathcal{O}(L_e^3\alpha^3), \mathcal{O}(L_e^2\alpha^1)\), etc. (It may include 1-st order IFI.)

 Most likely will be replaced by the Monte Carlo to attain FCC-ee precision.

2. The role of the effective Born is to encapsulate/represent data within exp. precision in the (SM) Model independent way. At FCC-ee precision it may necessarily include more of h.o. SM (EW boxes?), then just only imaginary parts of \(g_V, g_A\) !!!
Basic circular test (B)->(C)->(D)->(B) will be at FCC-ee the same as in LEP

Main difference with LEP is Monte Carlo use in steps (B)->(C) and (B)->(D) instead of progs like ZFITTER/TOPAZ0

For LEP version see:
At the FCC-ee exp. precisions present QED uncertainty is unacceptable!

Current QED precision vs. FCCee exp. error

Anticipated FCC-ee experimental precision
Needed improvement for QED precision at FCCee

Depending on the observable factor 6-200 improvements needed!
The same but with difficulty rating and planning what to be done?

<table>
<thead>
<tr>
<th>Observable</th>
<th>Source</th>
<th>Err. ${QED}$ LEP</th>
<th>Stat[Syst] FCC-ee</th>
<th>LEP FCC-ee</th>
<th>main development to be done</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_Z [MeV]</td>
<td>Z linesh.</td>
<td>2.1{0.3}</td>
<td>0.005[0.1]</td>
<td>$3 \times 3^*$</td>
<td>light fermion pairs</td>
</tr>
<tr>
<td>Γ_Z [MeV]</td>
<td>Z linesh.</td>
<td>2.1{0.2}</td>
<td>0.008[0.1]</td>
<td>$2 \times 3^*$</td>
<td>fermion pairs</td>
</tr>
<tr>
<td>$R^Z_l \times 10^3$</td>
<td>$\sigma(M_Z)$</td>
<td>25{12}</td>
<td>0.06[1.0]</td>
<td>$12 \times 3^{**}$</td>
<td>better FSR</td>
</tr>
<tr>
<td>σ^0_{had} [pb]</td>
<td>σ^0_{had}</td>
<td>37{25}</td>
<td>0.1[4.0]</td>
<td>$6 \times 3^*$</td>
<td>better lumi MC</td>
</tr>
<tr>
<td>$N_\nu \times 10^3$</td>
<td>$\sigma(M_Z)$</td>
<td>8{6}</td>
<td>0.005[1.0]</td>
<td>$6 \times 3^*$</td>
<td>CEEX in lumi MC</td>
</tr>
<tr>
<td>$\sin^2 \theta_W \times 10^5$</td>
<td>$Z\gamma$</td>
<td>150{60}</td>
<td>0.8[< 1]</td>
<td>$60 \times 3^{**}$</td>
<td>$\mathcal{O}(\alpha^2)$ for $Z\gamma$</td>
</tr>
<tr>
<td>$\sin^2 \theta_W \times 10^5$</td>
<td>$A^\text{lept.}_{FB}$</td>
<td>53{28}</td>
<td>0.3[0.5]</td>
<td>$55 \times 3^{**}$</td>
<td>h.o. and EWPOs</td>
</tr>
<tr>
<td>$\langle P_{\tau}, A_{FB}^\text{pol,}\tau \rangle$</td>
<td>A_{FB}</td>
<td>41{12}</td>
<td>0.6[< 0.6]</td>
<td>$20 \times 3^{**}$</td>
<td>better τ decay MC</td>
</tr>
<tr>
<td>M_W [MeV]</td>
<td>mass rec.</td>
<td>33{6}</td>
<td>0.5[0.3]</td>
<td>$12 \times 3^{**}$</td>
<td>QED at threshold</td>
</tr>
<tr>
<td>$A_{FB,\mu}$ $^{M_Z \pm 3.5}\text{GeV} \times 10^5$</td>
<td>$\frac{d\sigma}{d\cos\theta}$</td>
<td>2000{100}</td>
<td>1.0[0.3]</td>
<td>$100 \times 3^{***}$</td>
<td>improved IFI</td>
</tr>
</tbody>
</table>

Table 2: Comparing experimental and theoretical errors at LEP and FCC-ee as in Table 1, 3rd column shows LEP experimental error together with uncertainty induced by QED and 4th column shows anticipated FCC-ee experimental statistical [systematic] errors. Additional factor $\times 3$ in the 5-th column (4th in Table 1) reflects what is needed for QED effects to be subdominant. Rating from * to ** marks whether the needed improvement is relatively straightforward, difficult or very difficult to achieve.

More details for selected observables
Present (LEP)

No cut-offs (except on $\sum E_T$)

QED err. according to ADLO 2005: $\delta M_Z, \delta \Gamma_Z \simeq 0.2 - 0.3$ MeV

σ_{had} ISR: $\mathcal{O}(\alpha^1 L_1, \alpha^1, \alpha^2 L_2^2, \alpha^2 L_1^1, \alpha^3 L_3^3)_\gamma$ $\mathcal{O}(\alpha^2 L_2^2, \alpha^2 L_1^1, \alpha^3 L_3^3)_\text{pairs}$

σ_{lept} ISR+FSR

Non-MC implementation, 1-d or 2-d convolution

Initial-final interference (IFI) neglected

Simplified idealised cut-offs

ZFITTER and TOPAZ0 non-MC programs

AND

MC event generators: KORALZ, KKMC, BHWIDE

Arbitrary realistic cut-offs

MC event generators: KORALZ, KKMC, BHWIDE

For luminosity uncertainty see next…

FCC-ee

No cut-offs

exp. $\delta M_Z, \delta \Gamma_Z \leq 0.1$ MeV, QED ≤ 0.03 MeV

Factor ~ 10 improvement in QED is needed!

LEP simplistic convolution may survive only for σ_{had} provided pairs improved, $\mathcal{O}(\alpha^2 L_1^0, \alpha^3 L_2^2, \alpha^4 L_3^4)_\gamma$ are added and mixed QCD-QED corrections are improved.

For leptons MC will *take over* due to IFI and pairs

Simplified idealised cut-offs

Only MC event generators of the KKMC class or better will be able to match FCC-ee precision

Arbitrary realistic cut-offs

Only MC event generators of the KKMC class or better:

Upgrades of the matrix element:

$\mathcal{O}(\alpha^2 L_1^1)$ penta-boxes, $\mathcal{O}(\alpha^3 L_2^3)$ in CEEX m.e.

Inventing new MC approach for light fermion pairs.

Provisions for SM parameter fitting and extracting new EWPOs from data
Charge and spin asymmetries at mZ

Present (LEP)

Charge asymmetry

QED err. at LEP: \(\delta A^\mu_{FB}(M_Z) \simeq 50 \cdot 10^{-5} \)

translates into \(\delta \sin^2 \theta_{\text{eff}} \simeq 28 \cdot 10^{-5} \)

[Conservative estimate based on comparisons of KKMC, ZFITTER, KORALZ, Phys. Ref. D63 (2001) 113009]

However, the effects due to ISR, IFI, EW boxes, imaginary parts of Z couplings, gamma exch. background are genuinely of order \(\delta A^\mu_{FB}(M_Z) \simeq 10 \cdot 10^{-5} \)

FCC-ee

FCC-ee exp. error \(\delta A^\mu_{FB}(M_Z) \simeq 1 \cdot 10^{-5} \)

\(\delta \sin^2 \theta_{\text{eff}} \simeq 0.5 \cdot 10^{-5} \)

Factor \(\sim 50-150 \) improvement in QED is needed!

Once they are mastered with 10\% precision, the way to \(\delta A^\mu_{FB}(M_Z) \simeq 1 \cdot 10^{-5} \) is open!

KKMC with complete \(\mathcal{O}(\alpha^2) \) matrix element, soft photon resummation including IFI, EW corrections is already there. One needs the same for Bhabha!

The biggest challenge is, may be, the consistent definition of \(\sin^2 \theta_{\text{eff}} \) at the FCC-ee precision!

Spin asymmetries

\(\langle \mathcal{P}_\tau \rangle \) and \(A^\text{pol,}\tau_{FB} \) at LEP were worth \(\delta \sin^2 \theta_{\text{eff}} \simeq 41 \cdot 10^{-5} \)

including QED induced uncertainty due to photon emissions in tau decays \(\delta \sin^2 \theta_{\text{eff}} \simeq 12 \cdot 10^{-5} \)

QED err. is small due to weak dependence on CMS energy.

Expected FCC-ee exp. error \(\delta \sin^2 \theta_{\text{eff}} \simeq 0.6 \cdot 10^{-5} \)

Factor \(\sim 20-60 \) improvement in QED is needed!

To be studied:
- polarimeter biases due to decay channel cross-talk and photon emission in tau decays
- QED effects in tau-pair production
- exploiting super-Belle tau decay data in order to calibrate tau decay MC simulation
\(\alpha_{QED}(M_Z) \) from \(A_{FB}(M_Z \pm 3.5 GeV) \)

- Determination of \(\alpha_{QED}(M_Z) = \alpha(0)/(1 - \Delta \alpha) \) with precision \(\sim 3 \times 10^{-5} \) critical for SM fits.
- Table of parametric uncertainty with
 \[\delta M_Z \approx 0.1 MeV, \quad \delta m_t \approx 50 MeV \]
 \[\delta \alpha_s \approx 2 \cdot 10^{-4}, \quad \delta(\Delta \alpha) \approx 5 \cdot 10^{-5} \]

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{EWPO} & \text{Exp. direct error} & \text{Param. error} & \text{Main source} & \text{Theory uncert.} \\
\hline
\Gamma_Z [\text{MeV}] & 0.1 & 0.1 & \delta \alpha_s & 0.07 \\
R_b [10^{-5}] & 6 & 1 & \delta \alpha_s & 3 \\
R_t [10^{-3}] & 1 & 1.3 & \delta \alpha_s & 0.7 \\
\sin^2 \theta^f_{\ell} [10^{-5}] & 0.5 & 1 & \delta(\Delta \alpha) & 0.7 \\
M_W [\text{MeV}] & 0.5 & 0.6 & \delta(\Delta \alpha) & 0.3 \\
\hline
\end{array}
\]

Table 3: Estimated experimental precision for the direct measurement of several important EWPOs at FCC-ee [2] (column two) and experimental parametric error (column three), with the main source shown in the forth column. Important input parameter errors are \(\delta(\Delta \alpha) = 3 \cdot 10^{-5}, \delta \alpha_s = 0.00015 \) see FCC CDR, vol. 2 [1]. Last column shows anticipated theory uncertainties at start of FCC-ee.

- Measuring \(A_{FB}(M_Z \pm 3.5 GeV) \) with precision \(3 \times 10^{-5} \), factor 200 more precisely than at LEP was proposed in order to get \(\alpha_{QED}(M_Z) \) with the needed precision \(\sim 10^{-5} \).
- QED Initial-Final state interference IFI is the main obstacle!
- IFI cancels partly in the difference \(\tilde{A}_{FB}(M_Z \pm 3.5 GeV) \), but \(\sim 1\% \) effect remains.
 Can one control IFI in \(A_{FB} \) with the precision \(3 \times 10^{-5} \) ???
- In arXiv:1801.08611 Phys. Rev. D (S.J. and S.Yost) it was shown that using KKMC and new KKfoam programs one may get precision \(\leq 10^{-4} \)
• **LEP legacy, lumi TH error budget**

<table>
<thead>
<tr>
<th>Type of correction/error</th>
<th>LEP1 1996</th>
<th>LEP2 1996</th>
<th>LEP1 1999</th>
<th>LEP2 1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Missing photonic $O(\alpha^2)$ [4,5]</td>
<td>0.10%</td>
<td>0.20%</td>
<td>0.027%</td>
<td>0.04%</td>
</tr>
<tr>
<td>(b) Missing photonic $O(\alpha^2 L^3)$ [6]</td>
<td>0.015%</td>
<td>0.03%</td>
<td>0.015%</td>
<td>0.03%</td>
</tr>
<tr>
<td>(c) Vacuum polarization [7,8]</td>
<td>0.04%</td>
<td>0.10%</td>
<td>0.04%</td>
<td>0.10%</td>
</tr>
<tr>
<td>(d) Light pairs [9,10]</td>
<td>0.03%</td>
<td>0.05%</td>
<td>0.03%</td>
<td>0.05%</td>
</tr>
<tr>
<td>(e) Z-exchange [11,12]</td>
<td>0.015%</td>
<td>0.0%</td>
<td>0.015%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Total</td>
<td>0.11% [12]</td>
<td>0.25% [12]</td>
<td>0.061% [13]</td>
<td>0.12% [13]</td>
</tr>
</tbody>
</table>

Table 1: Summary of the total (physical+technical) theoretical uncertainty for a typical calorimeteric detector. For LEP1, the above estimate is valid for a generic angular range within 1°-3° (18-52 mrad), and for LEP2 energies up to 176 GeV and an angular range within 3°-6°. Total uncertainty is taken in quadrature. Technical precision included in (a).

• **By the time of FCC-ee VP contribution will be merely 0.006%**

• **QED corrections and Z contrib. come back to front!**

• **Z contr. easy to master, even if rises at FCC-ee, because (28-58)->(64-86) mrad.**

• **Our FCC-ee forecast is 0.01% provided QED m.e. and VP are improved.**

![arXiv:1902.05912](Low angle Bhabha (luminosity) at FCCee arXiv:1902.05912)

LEP lumi update 2018

<table>
<thead>
<tr>
<th>Type of correction / Error</th>
<th>1999</th>
<th>Update 2018</th>
<th>FCCee forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Photonic $O(L\alpha^2)$</td>
<td>0.027% [5]</td>
<td>0.027%</td>
<td>0.6×10^{-5}</td>
</tr>
<tr>
<td>(b) Photonic $O(L^3\alpha^3)$</td>
<td>0.015% [6]</td>
<td>0.015%</td>
<td>0.1×10^{-4}</td>
</tr>
<tr>
<td>(c) Vacuum polariz.</td>
<td>0.040% [7,8]</td>
<td>0.013% [25]</td>
<td>0.6×10^{-4}</td>
</tr>
<tr>
<td>(d) Light pairs</td>
<td>0.030% [10]</td>
<td>0.010% [18, 19]</td>
<td>0.5×10^{-4}</td>
</tr>
<tr>
<td>(e) s-channel Z-exchange</td>
<td>0.015% [11,12]</td>
<td>0.015%</td>
<td>0.1×10^{-4}</td>
</tr>
<tr>
<td>(f) Up-down interference</td>
<td>0.0014% [27]</td>
<td>0.0014%</td>
<td>0.1×10^{-4}</td>
</tr>
<tr>
<td>(f) Technical Precision</td>
<td>(0.027)%</td>
<td>(0.027)%</td>
<td>1.0×10^{-4}</td>
</tr>
<tr>
<td>Total</td>
<td>0.061% [13]</td>
<td>0.038%</td>
<td>1.0×10^{-4}</td>
</tr>
</tbody>
</table>
Z invisible width from peak cross section and radiative return

Present (LEP)

QED err. of luminosity \[\frac{\delta \mathcal{L}}{\mathcal{L}} = \frac{\delta \sigma_{\text{had}}^0}{\sigma_{\text{had}}^0} \approx 0.06\% \]
dominate LEP exp. error \[N_\nu \approx 2.984 \pm 0.008 \{\pm 0.006\}_{QED} \]

Radiative return I

\[e^+ e^- \rightarrow \nu \bar{\nu} \gamma \]
\[N_\nu \approx 2.69 \pm 0.15 \{\pm 0.06\}_{QED} \]

Limited by poor LEP statistics at 161GeV

FCC-ee

Peak cross section

FCC-ee exp. error (syst.) \[\delta N_\nu \approx 0.001 \]
Factor ~10 improvement in luminosity is needed!
\[\frac{\delta \mathcal{L}}{\mathcal{L}} \approx 10^{-4} \rightarrow \delta N_\nu \approx 8 \cdot 10^{-4} \text{ seems achievable.} \]

Radiative return II

Measuring ratio \[R = \frac{\sigma_{\nu \bar{\nu} \gamma}}{\sigma_{\mu^+\mu^-\gamma}} \]
Luminosity error drops out!

QED uncertainty due to FSR in \[\sigma_{\mu^+\mu^-\gamma} \text{ rated at } 0.03\% \]
(unpublished study using KKMC).
Again \[\delta N_\nu \approx 0.001 \]
Summary

- Major effort is needed to improve SM/QED predictions for FCC-ee observables by factor 10-200
- In particular QED corrections for asymmetries near Z has to be improved by factor up to 200
- New algorithms of extracting EW pseudo-observables from experimental data has to be worked out and cross-checked
- Increased role of MC event generators is anticipated

This work is partly supported by the Polish National Science Center grant 2016/23/B/ST2/03927 and the CERN FCC Design Study Programme.
Reserve
5-dim convolution formula including IFI

NEW analytical exponentiation formula for ISR+FSR+IFI

Eq.(90) in [JWW2001] and in older Frascati works, implemented recently in KKfoam

\[
\frac{d\sigma}{d\Omega}(s, \theta, v_{max}) = \sum_{V, V' = \gamma, Z} \int d\theta \ dv_F \ dv_{IF} \ dv_{FI} \ \theta(v_I - v_F - v_{IF} - v_{FI} < v_{max}) \\
\times F(\gamma_I) \gamma_{II}^{\gamma_{II}^{-1}} \ F(\gamma_F) \gamma_{IF}^{\gamma_{IF}^{-1}} \ F(\gamma_{IF}) \gamma_{FI}^{\gamma_{FI}^{-1}} \ F(\gamma_{FI}) \gamma_{FII}^{\gamma_{FII}^{-1}} \\
\times e^{2\alpha \Delta B_4^Z} \ M^{(0)}_V(s(1 - v_I - v_{IF}), \theta) \ [e^{2\alpha \Delta B_4^Z} \ M^{(0)}_{V'}(s(1 - v_I - v_{FI}), \theta)]^* \ [1 + \text{NIR}(v_I, v_F)],
\]

- Convolution of four radiator functions (instead of two)!
- Extra virtual formfactor ΔB_4^Z due to IFI for resonant contrib.
- $\gamma_I = Q_e^2 \frac{\alpha}{\pi} \left[\frac{s}{m_e^2} - 1 \right]$, $\gamma_{IF} = \gamma_{FI} = Q_e Q_i \frac{\alpha}{\pi} \ln \frac{1 - \cos \theta}{1 + \cos \theta}$, $\gamma(\gamma) = \frac{e^{-C_E \gamma}}{f(1 + \gamma)}$

S. Jadach (IFJ PAN, Krakow) QED effects in charge asymmetry near Z peak CERN, Jan. 15-th, 2018 16 / 24