

QED at the Z pole: Challenges

Stanisław Jadach

in collaboration with M. Skrzypek

June 24-28, 2019

FCC Week 2019, Brussels

 $^{^*}$ This work is partly supported by the Polish National Science Center grant 2016/23/B/ST2/03927 and the CERN FCC Design Study Programme.

Explaining Master Table of https://arxiv.org/abs/1903.09895

What are PSEUDO-OBSERVABLEs (POs)?

Desired improvement factor for QED!

What is QED-induced uncertainty in PO?

10				3	A 200 B
Observable	Where from	Present (LEP)	FCC stat.	FCC syst	$\frac{\text{Now}}{\text{FCC}}$
M_Z [MeV]	Z linesh. [29]	$91187.5 \pm 2.1\{0.3\}$	0.005	0.1	3
$\Gamma_Z \ [{ m MeV}]$	Z linesh. [29]	$2495.2 \pm 2.1\{0.2\}$	0.008	0.1	2
$R_l^Z = Y_h/\Gamma_l$	$\sigma(M_Z)$ [34]	$20.767 \pm 0.025 \{0.012\}$	$6 \cdot 10^{-5}$	$1\cdot 10^{-3}$	12
$\sigma_{ m had}^0[m nb]$	$\sigma_{\mathrm{had}}^{0} [2\overline{9}]$	$41.541 \pm 0.037 \{0.025\}$	$0.1\cdot10^{-3}$	$4 \cdot 10^{-3}$	6
$N_{ u}$	$\sigma(M_Z)$ [20]	$2.984 \pm 0.008 \{0.006\}$	$5 \cdot 10^{-6}$	1.10^{-3}	6
$N_{ u}$	$Z\gamma$ [35]	$2.69 \pm 0.15 \{0.06\}$	$0.8 \cdot 10^{-3}$	$< 10^{-3}$	60
$\sin^2 \theta_W^{eff} \times 10^5$	$A_{FB}^{lept.}$ [34]	$23099 \pm 53\{28\}$	0.3	0.5	55
$\sin^2 \theta_W^{eff} \times 10^5$	$\langle \mathcal{P}_{\tau} \rangle, A_{\mathrm{FB}}^{pol,\tau}[29]$	$23159 \pm 41\{12\}$	0.6	< 0.6	20
$M_W [{ m MeV}]$	ADLO [36]	$80376 \pm 33 \{ \red{6} \}$	0.5	0.3	12
$A_{FB,\mu}^{M_Z\pm3.5{\rm GeV}}$	$\frac{d\sigma}{d\cos\theta}$ [29]	$\pm 0.020\{0.001\}$	$1.0 \cdot 10^{-5}$	$0.3\cdot 10^{-5}$	100

How LEP and FCC-ee exp. precisions do compare?

What are EW pseudo-observables (EWPOs)?

	Correlation matrix
$\chi^2/\text{dof} = 155/194$	OPAL
$m_{\rm Z} [{\rm GeV}] 91.1858 \pm 0.0030$	1.000
$\Gamma_{\rm Z} [{\rm GeV}] = 2.4948 \pm 0.0041$	0.049 1.000
$\sigma_{\rm had}^0 [{\rm nb}] = 41.501 \pm 0.055$	0.031 - 0.352 1.000
$R_{\rm e}^0$ 20.901 \pm 0.084	0.108 0.011 0.155 1.000
R_{μ}^{0} 20.811 \pm 0.058	0.001 0.020 0.222 \$6.093 1.000
R_{μ}^{0} 20.811 ± 0.058 R_{τ}^{0} 20.832 ± 0.091	0.001 0.013 0.137 0.039 0.051 1.000
$A_{\rm FB}^{\rm 0,e}$ 0.0089 ± 0.0045	-0.053 - 0.005 0.011 - 0.222 - 0.001 0.005 1.000
$A_{\rm FB}^{0,\mu}$ 0.0159 ± 0.0023	0.077 - 0.002 0.011 0.031 0.018 $0.004 - 0.012$ 1.000
$A_{\rm FB}^{0,\tau}$ 0.0145 + 0.0030	0.059 - 0.003
1.0	1

Table 2.4: Individual results on Z parameters and their correlation coefficients from the four experiments. Systematic errors are included here except those summarised in Table 2.9

Example of basic 9 EWPO's at LEP1, without lepton universality

Example of EWPO: $\sigma_{\rm had}^0$

Experimental $\sigma_{\rm had}(s_i)$ measured at 7 energies $E_{\rm cm}^{(i)}=s_i^{1/2}$ are fit using 1-D convolution formula $\sigma(s)=\int_0^1 dz \; \sigma^{Born}(zs) \; \rho_{QED}(z)$

and $\sigma_{\rm had}^0 = \sigma_{\rm had}^{\it Born}(M_Z)$ is calculated <u>afterwards!</u> Z Mass and width from the same fit.

Induced QED uncertainty (next slide) enters through ρ_{QED}

Where is QED-induced uncertainty of PO in the landscape of theory and exp. errors?

Induced QED error in LEP pseudo-observables?

Induced QED error in LEP pseudo-observables

In LEP experiments QED uncertainty was safely below pure experimental errors

What are EW pseudo-observables (EWPOs)?

ALEPH DELPHI

Example of charge asymmetry is more complicated:

$$A_{FB}^{\mu,0} = \frac{\int_{F} d\sigma^{Born} - \int_{B} d\sigma^{Born}}{\int_{F} d\sigma^{Born} + \int_{B} d\sigma^{Born}} \bigg|_{s=M_{Z}^{2}}$$

<u>calculated</u> using $\frac{d\sigma^{Born}(s)}{d\cos\theta}[g_V^{\mu},g_A^{\mu}]$

Eff. Born is central in EWPO construction!

$$\frac{2s}{\pi} \frac{1}{N_c^f} \frac{d\sigma_{\text{ew}}}{d\cos\theta} (e^+e^- \to f\bar{f}) = \frac{\left[\alpha(s)Q_f\right]^2 (1 + \cos^2\theta)}{\sigma^{\gamma}} \\
= \frac{-8\Re\left\{\alpha^*(s)Q_f\chi(s) \left[\mathcal{G}_{\text{Ve}}\mathcal{G}_{\text{Vf}} (1 + \cos^2\theta) + 2\mathcal{G}_{\text{Ae}}\mathcal{G}_{\text{Af}}\cos\theta\right]\right\}}{\gamma - \text{Z interference}} \\
+16|\chi(s)|^2 \left[(|\mathcal{G}_{\text{Ve}}|^2 + |\mathcal{G}_{\text{Ae}}|^2)(|\mathcal{G}_{\text{Vf}}|^2 + |\mathcal{G}_{\text{Af}}|^2)(1 + \cos^2\theta) + 8\Re\left\{\mathcal{G}_{\text{Ve}}\mathcal{G}_{\text{Ae}}^*\right\}\Re\left\{\mathcal{G}_{\text{Vf}}\mathcal{G}_{\text{Af}}^*\right\}\cos\theta\right]} \\
\text{with:} \\
\chi(s) = \frac{G_F m_Z^2}{8\pi\sqrt{2}} \frac{s}{s - m_Z^2 + is\Gamma_Z/m_Z}, \tag{1.35}$$

https://arxiv.org/abs/hep-ex/0509008v3

----- A_{FB} from fit

0.2

average measurements

Z coupling constants in the <u>effective Born</u> $g_{V,A}^f = \Re(\mathcal{G}_{Vf,Af})$ are fit to $A_{FB}^\mu(s_i), \sigma(s_i)$ at several s_i using convolution formula

$$\frac{d\sigma^{\mu}}{d\cos\theta^*}(s,\theta^*) = \mathbf{CONV} \left\{ \frac{d\sigma_{\mu}^{Born}(s)}{d\cos\theta}, \rho_{QED} \right\}, \qquad \theta^* \neq \theta$$

What are EW pseudo-observables (EWPOs)?

From experimental **DATA to EWPO** — effective Born is central object!

$$A_{FB}^{e,\mu,\tau}(s_i), \sigma^{h,e,\mu,\tau}(s_i), P_{\tau}(s_i) \dots$$

Fit (MINUIT) using eff. Born $g_{V,A}^f = \Re(\mathcal{G}_{Vf,Af})$

$$g_{V,A}^f = \Re(\mathcal{G}_{Vf,Af})$$

pocket calculator

$$\begin{array}{lcl} A_{\rm FB}^{0,\,{\rm f}} & = & \frac{3}{4} \mathcal{A}_{\rm e} \mathcal{A}_{\rm f} & \mathcal{A}_{\rm f} & = & \frac{g_{\rm Lf}^2 - g_{\rm Rf}^2}{g_{\rm Lf}^2 + g_{\rm Rf}^2} = \frac{2g_{\rm Vf}g_{\rm Af}}{g_{\rm Vf}^2 + g_{\rm Af}^2} \\ A_{\rm LR}^0 & = & \mathcal{A}_{\rm e} \\ A_{\rm LRFB}^0 & = & \frac{3}{4} \mathcal{A}_{\rm f} & \frac{g_{\rm Vf}}{g_{\rm Af}} & = & 1 - \frac{2Q_{\rm f}}{T_3^{\rm f}} \sin^2 \theta_{\rm eff}^{\rm f} \\ \langle \mathcal{P}_{\tau}^0 \rangle & = & - \mathcal{A}_{\tau} \\ A_{\rm FB}^{\rm pol,0} & = & -\frac{3}{4} \mathcal{A}_{\rm e} \,. & \sigma_{\rm ff}^0 & = & \frac{12\pi}{m_{\rm Z}^2} \, \frac{\Gamma_{\rm ee} \Gamma_{\rm ff}}{\Gamma_{\rm Z}^2} \,. \\ \Gamma_{\rm ff} & = & N_c^{\rm f} \frac{G_{\rm F} m_{\rm Z}^3}{6\sqrt{2}\pi} \left(|\mathcal{G}_{\rm Af}|^2 R_{\rm Af} + |\mathcal{G}_{\rm Vf}|^2 R_{\rm Vf} \right) + \Delta_{\rm ew/QCD} \,. \end{array}$$

Two key points:

- 1. The convolution formula approximates QED, including (at LEP) $\mathcal{O}(\alpha^1), \mathcal{O}(L_e^2\alpha^2), \mathcal{O}(L_e^3\alpha^3), \mathcal{O}(L_e^2\alpha^1),$ etc. (It may include 1-st order IFI.) Most likely will be replaced by the Monte Carlo to attain FCC-ee precision.
- 2. The role of the effective Born is to encapsulate/represent data within exp. precision in the (SM) Model independent way. At FCC-ee precision it may necessarily include more of h.o. SM (EW boxes?), then just only imaginary parts of g_V, g_A !!!

Validating/testing Pseudo-Observables at FCC-ee

https://arxiv.org/abs/1903.09895

Basic circular test (B)->(C)->(D)->(B) will be at FCC-ee the same as in LEP

Main difference with LEP is Monte Carlo use in steps (B)->(C) and (B)->(D) instead of progs like ZFITTER/TOPAZ0

At the FCC-ee exp. precisions present QED uncertainty is unacceptable!

Current QED precision vs. FCCee exp. error

Desired improvement factor for QED uncertainty at FCC-ee

Needed improvement for QED precision at FCCee

Depending on the observable factor 6-200 improvements needed!

The same but with difficulty rating and planing what to be done?

Observable	Source	Err.{QED}	Stat[Syst]	LEP	main development
	LEP	LEP	FCC-ee	$\overline{\text{FCC-ee}}$	to be done
$M_Z [{ m MeV}]$	Z linesh.	$2.1\{0.3\}$	0.005[0.1]	3×3*	light fermion pairs
$\Gamma_Z \; [{ m MeV}]$	Z linesh.	$2.1\{0.2\}$	0.008[0.1]	$2\times3^{\star}$	fermion pairs
$R_l^Z \times 10^3$	$\sigma(M_Z)$	$25\{12\}$	0.06[1.0]	12×3**	better FSR
$\sigma_{ m had}^0 \; [m pb]$	$\sigma_{ m had}^0$	$37{25}$	0.1[4.0]	6×3*	better lumi MC
$N_{\nu} \times 10^3$	$\sigma(M_Z)$	8{6}	0.005[1.0]	6×3*	CEEX in lumi MC
$N_{\nu} \times 10^3$	$Z\gamma$	$150\{60\}$	0.8[<1]	60×3**	$\mathcal{O}(\alpha^2)$ for $Z\gamma$
$\sin^2 \theta_W^{eff} \times 10^5$	$A_{FB}^{lept.}$	53{28}	0.3[0.5]	55×3**	h.o. and EWPOs
$\sin^2 \theta_W^{eff} \times 10^5$	$\langle \mathcal{P}_{\tau} \rangle, A_{\mathrm{FB}}^{pol, \tau}$	41{12}	0.6[<0.6]	20×3**	better τ decay MC
$M_W [{ m MeV}]$	mass rec.	33{6}	0.5[0.3]	12×3***	QED at threshold
$A_{FB,\mu}^{M_Z\pm3.5{ m GeV}} \times 10^5$	$\frac{d\sigma}{d\cos\theta}$	2000{100}	1.0[0.3]	100×3***	improved IFI

Table 2: Comparing experimental and theoretical errors at LEP and FCC-ee as in Table 1. 3rd column shows LEP experimental error together with uncertainty induced by QED and 4th column shows anticipated FCC-ee experimental statistical [systematic] errors. Additional factor $\times 3$ in the 5-th column (4th in Table 1) reflects what is needed for QED effects to be *subdominant*. Rating from * to *** marks whether the needed improvement is relatively straightforward, difficult or very difficult to achieve.

S.J. and M. Skrzypek arXiv:1903.09895 [hep-ph]

More details for selected observables

QED in Z line-shape: $\sigma_{tot}(s), M_Z, \Gamma_Z, R_l$

Present (LEP)

FCC-ee

No cut-offs (except on $\sum E_{\gamma}$)

QED err. according to ADLO 2005: δM_Z , $\delta \Gamma_Z \simeq 0.2 - 0.3 \text{ MeV}$

 σ_{had} ISR: $\mathcal{O}(\alpha^1 L_e^1, \alpha^1, \alpha^2 L_e^2, \alpha^2 L_e^1, \alpha^3 L_e^3)_{\gamma}$ $\mathcal{O}(\alpha^2 L^2, \alpha^2 L^1, \alpha^3 L^3)_{pairs}$ Phys.Lett. B456 (1999) 77

 σ_{lept} ISR+FSR

Non-MC implementation, 1-d or 2-d convolution Initial-final interference (IFI) neglected

Simplified idealised cut-offs

ZFITTER and TOPAZ0 non-MC programs

AND

MC event generators: KORALZ, KKMC, BHWIDE

Arbitrary realistic cut-offs

MC event generators: KORALZ, KKMC, BHWIDE

No cut-offs

exp. δM_Z , $\delta \Gamma_Z \le 0.1$ MeV, QED ≤ 0.03 MeV

Factor ~10 improvement in QED is needed!

LEP simplistic convolution may survive only for σ_{had} provided pairs improved, $\mathcal{O}(\alpha^2 L_e^0, \alpha^3 L_e^2, \alpha^4 L_e^4)_{\gamma}$ are added and mixed QCD-QED corrections are improved.

For leptons MC will take over due to IFI and pairs

Simplified idealised cut-offs

Only MC event generators of the KKMC class or better will be able to match FCC-ee precision

Arbitrary realistic cut-offs

Only MC event generators of the KKMC class or better:

Upgrades of the matrix element: $\mathcal{O}(\alpha^2 L_e^1)$ penta-boxes, $\mathcal{O}(\alpha^3 L_e^3)$ in CEEX m.e.

Inventing new MC approach for light fermion pairs.

Provisions for SM parameter fitting and extracting new EWPOs from data

For luminosity uncertainty see next...

Present (LEP)

FCC-ee

Charge asymmetry

QED err. at LEP: $\delta A_{FB}^{\mu}(M_Z) \simeq 50 \cdot 10^{-5}$ translates into $\delta \sin^2 \theta_W^{eff} \simeq 28 \cdot 10^{-5}$

[Conservative estimate based on comparisons of KKMC, ZFITTER, KORALZ, Phys. Ref. D63 (2001) 113009]

However, the effects due to ISR, IFI, EW boxes, imaginary parts of Z couplings, gamma exch. background are genuinely of order $\delta A^\mu_{FB}(M_Z) \simeq 10 \cdot 10^{-5}$

FCC-ee exp. error
$$\frac{\delta A_{FB}^{\mu}(M_Z) \simeq 1 \cdot 10^{-5}}{\delta \sin^2 \theta_W^{eff} \simeq 0.5 \cdot 10^{-5}}$$

Factor ~ 50-150 improvement in QED is needed!

Once they are mastered with 10% precision, the way to $\delta A_{FR}^{\mu}(M_Z) \simeq 1 \cdot 10^{-5}$ is open!

KKMC with complete $\mathcal{O}(\alpha^2)$ matrix element, soft photon resummation including IFI, EW corrections is already there. One needs the same for Bhabha!

The biggest challenge is, may be, the consistent definition of $\sin^2\theta_W^{eff}$ at the FCC-ee precision!

Spin asymmetries

$$\left< \mathcal{P}_\tau \right> \ \, \text{and} \,\, A_{FB}^{pol,\tau} \quad \text{at LEP were worth} \quad \delta \sin^2 \theta_W^{eff} \simeq 41 \cdot 10^{-5}$$

including QED induced uncertainty due to photon emissions in tau decays $\delta \sin^2 \theta_W^{eff} \simeq 12 \cdot 10^{-5}$

QED err. is small due to weak dependence on CMS energy.

Expected FCC-ee exp. error $\delta \sin^2 \theta_W^{eff} \simeq 0.6 \cdot 10^{-5}$ Factor ~ 20-60 improvement in QED is needed!

To be studied:

- polarimeter biases due to decay chanel cross-talk and photon emission in tau decays
- QED effects in tau-pair production
- exploiting super-Belle tau decay data in order to calibrate tau decay MC simulation

$\alpha_{QED}(M_Z)$ from $A_{FB}(M_Z \pm 3.5 GeV)$

- Determination of $\alpha_{QED}(M_Z) = \alpha(0)/(1-\Delta\alpha)$ with precision ~3x10-5 critical for SM fits.
- Table of **parametric uncertainty** with

$$\delta M_Z \simeq 0.1 MeV, \ \delta m_t \simeq 50 MeV$$

 $\delta \alpha_s \simeq 2 \cdot 10^{-4}, \ \delta(\Delta \alpha) \simeq 5 \cdot 10^{-5}$

http://arxiv.org/abs/arXiv:1901.02648

EWPO	Exp. direct error	Param. error	Main source	Theory uncert.
Γ_Z [MeV]	0.1	0.1	$\delta \alpha_s$	0.07
$R_b [10^{-5}]$	6	1	$\delta lpha_s$	3
$R_{\ell} [10^{-3}]$	1	1.3	$\delta \alpha_s$	0.7
$\sin^2 \theta_{\rm eff}^{\ell} \ [10^{-5}]$	0.5	1	$\delta(\Delta\alpha)$	0.7
M_W [MeV]	0.5	0.6	$\delta(\Delta\alpha)$	0.3

Table 3: Estimated experimental precision for the direct measurement of several important EWPOs at FCC-ee [2] (column two) and experimental parametric error (column three), with the main source shown in the forth column. Important input parameter errors are $\delta(\Delta\alpha)=3\cdot 10^{-5}, \delta\alpha_s=0.00015$ see FCC CDR, vol. 2 [1]. Last column shows anticipated theory uncertainties at start of FCC-ee.

- Measuring $A_{FB}(M_Z \pm 3.5 GeV)$ with precision 3×10^{-5} , factor 200 more precisely than at LEP was proposed in order to get $\alpha_{QED}(M_Z)$ with the needed precision $\sim 10^{-5}$. P. Janot, JHEP11,164 (2017) arXiv:1512.05544
- QED Initial-Final state interference **IFI** is the main obstacle!
- IFI cancels partly in the difference $A_{FB}(M_Z \pm 3.5 GeV)$, but ~1% effect remains. Can one control IFI in A_{FB} with the precision $3x10^{-5}$???
- In <u>arXiv:1801.08611</u> Phys. Rev. D (S.J. and S.Yost) it was shown that using **KKMC** and new **KKfoam** programs one may get precision $\leq 10^{-4}$

Low angle Bhabha (luminosity) at FCCee arXiv:1902.05912

LEP legacy, lumi TH error budget

	LEP1		LEP2	
Type of correction/error	1996	1999	1996	1999
(a) Missing photonic $O(\alpha^2)$ [4, 5]	0.10%	0.027%	0.20%	0.04%
(b) Missing photonic $O(\alpha^3 L^3)$ [6]	0.015%	0.015%	0.03%	0.03%
(c) Vacuum polarization [7,8]	0.04%	0.04%	0.10%	0.10%
(d) Light pairs [9, 10]	0.03%	0.03%	0.05%	0.05%
(e) Z-exchange [11, 12]	0.015%	0.015%	0.0%	0.0%
Total	0.11% [12]	0.061% [13]	0.25% [12]	0.12% [13]

Table 1: Summary of the total (physical+technical) theoretical uncertainty for a typical calorimetric detector. For LEP1, the above estimate is valid for a generic angular range within 1° - 3° (18-52 mrads), and for LEP2 energies up to 176 GeV and an angular range within 3° - 6° . Total uncertainty is taken in quadrature. Technical precision included in (a).

LEP lumi update 2018

Type of correction / Error	1999	Update 2018
(a) Photonic $O(L_e\alpha^2)$	0.027% [5]	0.027%
(b) Photonic $O(L_e^3 \alpha^3)$	0.015% [6]	0.015%
(c) Vacuum polariz.	0.040% [7,8]	0.013% [25]
(d) Light pairs	0.030% [10]	0.010% [18, 19]
(e) s-channel Z-exchange	0.015% [11, 12]	0.015%
(f) Up-down interference	0.0014% [27]	0.0014%
(f) Technical Precision	_	(0.027)%
Total	0.061% [13]	0.038%

- By the time of FCC-ee VP contribution will be merely 0.006%
- QED corrections and Z contrib. come back to front!
- Z contr. easy to master, even if rises at FCC-ee, because (28-58)->(64-86) mrad.
- Our FCC-ee forecast is 0.01% provided QED m.e. and VP are improved.

Type of correction / Error	Up <u>date</u> 2018	FCCee forecast
(a) Photonic $O(L_e^4 \alpha^4)$	0.027%	0.6×10^{-5}
(b) Photonic $O(L_e^2 \alpha^3)$	0.015%	0.1×10^{-4}
(c) Vacuum polariz.	0.014% [25]	0.6×10^{-4}
(d) Light pairs	0.010% [18, 19]	0.5×10^{-4}
(e) Z and s -channel γ exchange	0.090% [11]	0.1×10^{-4}
(f) Up-down interference	0.009% [27]	0.1×10^{-4}
(f) Technical Precision	(0.027)%	0.1×10^{-4}
Total	0.097%	1.0×10^{-4}

Z invisible width from peak cross section and radiative return

Present (LEP) FCC-ee

Peak cross section

QED err. of luminosity
$$\frac{\delta \mathcal{L}}{\mathcal{L}} = \frac{\delta \sigma_{had}^0}{\sigma_{had}^0} \simeq 0.06 \%$$

dominates LEP exp. error $N_{\nu} \simeq 2.984 \pm 0.008 ~\{\pm 0.006\}_{QED}$

$$R_{\rm inv}^0 = \left(\frac{12\pi R_\ell^0}{\sigma_{\rm had}^0 m_{\rm Z}^2}\right)^{\frac{1}{2}} - R_\ell^0 - (3 + \delta_\tau), \quad R_{\rm inv}^0 = N_\nu \left(\frac{\Gamma_{\nu\overline{\nu}}}{\Gamma_{\ell\ell}}\right)_{\rm SM}.$$

FCC-ee exp. error (syst.) $\delta N_{\nu} \simeq 0.001$

Factor ~10 improvement in luminosity is needed!

$$\frac{\delta \mathcal{L}}{\mathscr{L}} \simeq 10^{-4} \rightarrow \delta N_{\nu} \simeq 8 \cdot 10^{-4}$$
 seems achievable.

Radiative return I

 $e^+e^- \rightarrow \nu \bar{\nu} \gamma$

 $N_{\nu} \simeq 2.69 \pm 0.15 \ \{\pm 0.06\}_{QED}$

Limited by poor LEP statistics at 161GeV

Expected FCC-ee exp. error of $\sigma_{\nu\bar{\nu}\gamma}$ not yet established, most likely: $\delta\sigma/\sigma \simeq 0.03\,\% \to \delta N_{\nu} \simeq 0.001$

Future luminosity error 0.01% looks ok.

Estimate of h.o. QED effects using KKMC is merely 0.02% (unpublished).

Altogether $\delta N_{\nu} \simeq 0.001$ seems achievable:) (Factor ~60 improvement in QED rather easy.)

Radiative return II

Measuring ratio $R = \frac{\sigma_{\nu\bar{\nu}\gamma}}{\sigma_{\mu^+\mu^-\gamma}}$

Luminosity error drops out!

QED uncertainty due to FSR in $\sigma_{\mu^+\mu^-\gamma}$ rated at 0.03% (unpublished study using KKMC).

Again $\delta N_{\nu} \simeq 0.001$

Summary

- Major effort is needed to improve SM/QED predictions for FCC-ee observables by factor 10-200
- In particular QED corrections for asymmetries near Z has to be improved by factor up to 200
- New algorithms of extracting EW pseudo-observables from experimental data has to be worked out and cross-checked
- Increased role of MC event generators is anticipated

 $^{^{\}star}$ This work is partly supported by the Polish National Science Center grant 2016/23/B/ST2/03927 and the CERN FCC Design Study Programme.

Reserve

5-dim convolution formula including IFI

NEW analytical exponentiation formula for ISR+FSR+IFI

Eq.(90) in [JWW2001] and in older Frascati works, implemented recently in KKfoam

$$\begin{split} \frac{d\sigma}{d\Omega}(s,\theta,v_{\text{max}}) &= \sum_{V,V'=\gamma,Z} \int d\theta \ dv_I \ dv_F \ dv_{IF} \ dv_{FI} \ \theta(v_I-v_F-v_{IF}-v_{FI} < v_{\text{max}}) \\ &\times F(\gamma_I)\gamma_I v_I^{\gamma_I-1} \ F(\gamma_F)\gamma_I v_F^{\gamma_F-1} \ F(\gamma_{IF})\gamma_{IF} v_{IF}^{\gamma_{IF}-1} \ F(\gamma_{FI})\gamma_{FI} v_{IF}^{\gamma_{FI}-1} \\ &\times e^{2\alpha\Delta B_4^V} \mathcal{M}_V^{(0)} \big(s(1-v_I-v_{IF}),\theta\big) \ \big[e^{2\alpha\Delta B_4^{V'}} \mathcal{M}_{V'}^{(0)} \big(s(1-v_I-v_{FI}),\theta\big)\big]^* \ \big[1+\mathrm{NIR}(v_I,v_F)\big], \end{split}$$

- Convolution of **four** radiator functions (instead of two)!
- Extra virtual formfactor ΔB_4^Z due to IFI for resonant contrib.

S. Jadach (IFJ PAN, Krakow)

QED effects in charge asymmetry near Z peak

CERN, Jan. 15-th, 2018

16 / 24

arXiv:1801.08611 [hep-ph] To appear in Phys. Rev. D