

Update on R2E and Heat Load Simulations

J. R. Hunt, F. Cerutti, A. Infantino: EN/STI-BMI and the Infrastructure and Operations Working Group FCC Week 2019 Thursday, 27th June

Contents

- Introduction
- Simulation & Updates
- Power load on beam screen and magnets
- Radiation levels on electronics
- Conclusions

Introduction

- FCC-hh arc cell beam-gas interaction
 - Impact of secondary showers on magnets and electronics.
- Beam lifetime, τ , considering losses due to nuclear scattering with residual gas:

$$\tau = \frac{1}{\sigma_g c n_g} > 100 \ h$$

Where:

 σ_g nuclear scattering cross section (86.4 mb), n_g molecular gas density

- -> Gives $n_q = 1 \times 10^{15}$ atoms/m³
- Update on previous work carried out by A. Infantino
 - FCC week 2017: "FLUKA Montecarlo modelling of the FCC arc cell: radiation environment and energy deposition due to beam-gas interactions"
 - FCC week 2018: "Radiation environment assessment in the FCChh and FCCee machines"

FLUKA Model

Lattice Element Updates

		Previous	Updated
		Radius [cm]	Radius [cm]
MB	Cold mass	45	37
MQ	Cold mass	32.37	24.87
MB	Coil	8.1	8.1
MQ	Coil	5.672	5.922

Additional increase in beam – beam separation: 20 -> 25 cm

Energy Deposition on Coils

Energy Deposition on Coils

1e-05

Energy deposition on coils

Energy deposition on coils

Energy deposition on coils

Power Per Element (Cold Mass)

- Updated design of beam screen provides less shielding for coils and cold mass:
 - Each beam screen now absorbing ~5% of power loss density as opposed to 16% previously.
 - **86%** absorbed by cold mass, **73%** previously.
- Average losses along arc cell: **414 mW/m** (2 beams)
- Maximum heat load on most impacted dipole is **476 mW/m** on cold mass (2 beams)

Beam 1	MB1	
	MB3	
Beam 2		
	MB10	
	MB12	

Two Beams Power per Element [w

(Current per beam: 0.5 A

Radiation to Electronics

- Scoring mesh in location of power converters/electronics
 - Direct comparison with previous results
- Normalised to 10⁷ s
 - ~1 year beam operation
- Total ionizing dose
 - Cumulative effects, long-term radiation damage
- High-energy hadron fluence (HEH):
 - proportional to number of single event upsets (SEUs)

Dose on Electronics

Longitudinal Plots Dose

Dose on Electronics: Combined Beams

R2E impact - HEH

R2E impact - HEH

27/6/2019

james.hunt@cern.ch - FCC Week 2019 25

Summary

- New beam screen design has impacted energy deposition on coils and cold mass
 - Now only 5% on beam screen with 86% on cold mass
 - Higher peak power density 1.6 mW/cm³ on coils
- R2E outcome: an increase in radiation to electronics under beamline
 - Maximum dose: 400 Gy yr⁻¹
 - Maximum high energy hadron fluence: 1.2e11 cm⁻² yr⁻¹
 - **However**, the gas density used ~200x greater than achieved currently in the LHC

Thanks for listening

james.hunt@cern.ch

Special thanks to I. Bellafont

