

Low Luminosity experimental insertions

M. Hofer, W. Bartmann, M.I. Besana, F. Burkart, F. Cerutti, R. Martin, E. Renner, D. Schulte, R. Tomas

Introduction

- As in the LHC, in the FCC-hh the low luminosity experiments are combined with the injection
- Overall insertion length is limited to 1.4 km, same as high luminosity insertions
- Currently, no luminosity requirements for these experiments have been specified
 - No experimental scenario
 - No design for detector
- In the following focus on Point B
 - Same layout also used for Point L
 - Point L also candidate for the FCC-eh collision point

Insertion Layout

- Contrary to the LHC low luminosity insertions, the design for the FCC-hh is asymmetric
 - Separates injection and experiments, which is favourable from machine protection point of view
 - Injection dump (TDI) is not located in between the superconducting dipoles as in LHC
- Due to early hardware considerations, the length of cells containing injection hardware has been set to 150 m
- To provide space for experiment, superconducting separation and recombination dipoles are required

Injection optics

- For optimal machine protection, some constraints on injection optics apply
 - Phase advance between kicker and TDI close to 90 degree, such that miskick translates into additional orbit offset at TDI
 - Small dispersion to reduce kicker aperture and ease of protection device setup
 - Large beam size at the TDI to limit peak energy density on the absorber [1]
- Currently very flat beam at TDI ($\beta_x = 37 m$, $\beta_y = 932 m$)
 - Possible issues with collimator alignment [2]
 - Alternative concepts to be looked into in the future

4

A. Lechner, "FCC-hh protection absorbers and dumps", FCC-Week 2018
E. Renner, "FCC-hh: Transferlines and Injection Insertion", FCC-Week 2018

Collision Optics

- For the low luminosity experiments an L* of 25 m was suggested by the detector design group
- With this layout a minimum β^* of 3 m was matched
 - At this β^* a crossing angle of up to $45 \mu rad$ is possible
 - All triplet quadrupoles have the same aperture of 64 mm

 Aperture of the triplet quadrupoles is reduced by a 10 mm tungsten shielding

Dynamic Aperture

- Impact of FQ of triplet quadrupoles and superconducting separation and recombination dipoles studied
 - For the triplet quadrupoles, the errors from the HL-LHC triplet were scaled to the reduced aperture and increased length

90°

- For the dipoles, the error tables from the HL-LHC D1 and D2 were used, scaled to the aperture
- DA is evaluated using SixTrack

Tracking parameters									
n _{turns}	105								
n _{angles}	5								
n _{seeds}	60								
ϵ_n	2.2 μm								

 For the current lattice, DA with errors in the low lumi insertions and with crossing angle is not a concern

Energy deposition

- Energy depositions studies conducted to determine luminosity reach
 - Max. instantaneous luminosity determined by quench limit of magnets
 - Cumulated dose sets the achievable integrated luminosity
- Triplet quadrupole model from High Lumi exp scaled to smaller aperture of Low Lumi exp.
 - 10 mm tungsten (INERMET180) shielding in quadrupole aperture
 - 76 cm long mask in front of Q1A
- Shielding gaps of 70 cm between quadrupoles

Peak power density

- For an instantaneous luminosity of $5 \cdot 10^{33} cm^{-2} s^{-1}$, peak power density is around $1 \ mW cm^{-3}$
 - Effect of shielding gaps clearly visible

- 63 % of the total power (2.6 kW) is escaping the triplet
 - Further simulations needed to see where escaping particles impact

Integrated Dose

- With current baseline radiation limits of 30 MGy, 500 fb⁻¹ seem feasible
- Options could be explored to increase triplet lifetime
 - Switch in crossing plane
 - Swap of triplet magnet in a long shutdown

CERN CERN

Conclusions

- Similar to the LHC layout, the FCC-hh layout features combined experimental and injection insertions
- In the absence of specific luminosity goals, a generic insertion was designed
 - A β* of 3 m could be achieved at collision energy
 - From energy deposition studies the currently attainable integrated luminosity for this design is about $500 fb^{-1}$
 - Impact of particles escaping the triplet to be studied
- From injection protection view show sufficient local protection efficiency
 - Further optimisation of optics to lighten alignment tolerances

Energy-Frontier Collider Study (EuroCirCol) project has received funding from the European Union's Horizon 2020 research and innovation programme under grant No 654305. The information herein only reflects the views of its authors and the European Commission is not responsible for any use that may be made of the information.

Circular

The European

Thank you for your attention!

FCC Week 19 | Low Luminosity Experimental insertions

FCC Week 19 | Low Luminosity Experimental insertions

Magnet parameter

Туре	Gradient [T/m]	Field [T]	Aperture [mm]	Length [m]	Units per IP
Triplet Q1	270	-	64	10	4
Triplet Q2	270	-	64	15	4
Triplet Q3	270	-	64	10	4
Separation Dipole	-	12	100	12.5	4
Recombination Dipole D2	-	10	60	15	4
Matching Quadrupole Short Type MQM	200	-	70	9.1	4
Matching Quadrupole Long Type MQML	300	-	50	12.8	6

Triplet Field Quality in HL-LHC

HL-LHC TDR V0.1

				$\langle \rangle$												
					Straight	I	Ends	Integral								
		Systematic							Uncertainty Random				Q1/Q3		Q2a/b	
Normal	Geometric	Ass. & cool	Saturation	Persistent	Injection	High Field	Injection	High Field	Injection	High Field	Conn. Side	Non conn. Side	Injection	High Field	Injection	High Field
2									10	10						
3	0.000	0.000	0.000	0.000	0.000	0.000	0.820	0.820	0.820	0.820			0.000	0.000	0.000	0.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.570	0.570	0.570	0.570			0.000	0.000	0.000	0.000
5	0.000	0.000	0.000	0.000	0.000	0.000	0.420	0.420	0.420	0.420			0.000	0.000	0.000	0.000
6	-2.200	0.900	0.660	-20.000	-21.300	-0.640	1.100	1.100	1.100	1.100	8.943	-0.025	-16.692	0.323	-18.593	-0.075
7	0.000	0.000	0.000	0.000	0.000	0.000	0.190	0.190	0.190	0.190			0.000	0.000	0.000	0.000
8	0.000	0.000	0.000	0.000	0.000	0.000	0.130	0.130	0.130	0.130			0.000	0.000	0.000	0.000
9	0.000	0.000	0.000	0.000	0.000	0.000	0.070	0.070	0.070	0.070			0.000	0.000	0.000	0.000
10	-0.110	0.000	0.000	4.000	3.890	-0.110	0.200	0.200	0.200	0.200	-0.189	-0.821	3.119	-0.175	3.437	-0.148
11	0.000	0.000	0.000	0.000	0.000	0.000	0.026	0.026	0.026	0.026			0.000	0.000	0.000	0.000
12	0.000	0.000	0.000	0.000	0.000	0.000	0.018	0.018	0.018	0.018			0.000	0.000	0.000	0.000
13	0.000	0.000	0.000	0.000	0.000	0.000	0.009	0.009	0.009	0.009			0.000	0.000	0.000	0.000
14	-0.790	0.000	-0.080	1.000	0.210	-0.870	0.023	0.023	0.023	0.023	-0.545	-1.083	0.033	-0.856	0.106	-0.862
Skew																
2									10.000	10.000	-31.342		-2.985	-2.985	-1.753	-1.753
3	0.000	0.000	0.000	0.000	0.000	0.000	0.650	0.650	0.650	0.650			0.000	0.000	0.000	0.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.650	0.650	0.650	0.650			0.000	0.000	0.000	0.000
5	0.000	0.000	0.000	0.000	0.000	0.000	0.430	0.430	0.430	0.430			0.000	0.000	0.000	0.000
6	0.000	0.000	0.000	0.000	0.000	0.000	0.310	0.310	0.310	0.310	2.209		0.210	0.210	0.124	0.124
7	0.000	0.000	0.000	0.000	0.000	0.000	0.190	0.190	0.190	0.190			0.000	0.000	0.000	0.000
8	0.000	0.000	0.000	0.000	0.000	0.000	0.110	0.110	0.110	0.110			0.000	0.000	0.000	0.000
9	0.000	0.000	0.000	0.000	0.000	0.000	0.080	0.080	0.080	0.080			0.000	0.000	0.000	0.000
10	0.000	0.000	0.000	0.000	0.000	0.000	0.040	0.040	0.040	0.040	0.065		0.006	0.006	0.004	0.004
11	0.000	0.000	0.000	0.000	0.000	0.000	0.026	0.026	0.026	0.026			0.000	0.000	0.000	0.000
12	0.000	0.000	0.000	0.000	0.000	0.000	0.014	0.014	0.014	0.014			0.000	0.000	0.000	0.000
13	0.000	0.000	0.000	0.000	0.000	0.000	0.010	0.010	0.010	0.010			0.000	0.000	0.000	0.000
14	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.005	0.005	0.005	-0.222		-0.021	-0.021	-0.012	-0.012
Magnetic length straight part				Q1/Q3	3.459	Q2a/b	6.409	Mag. L	en. Ends	0.400	0.341					

Triplet Field Quality in the Low Lumi Triplet

	Lov	v Luminosit	v Triplet C)1a/b O3a/	b Field Qua	litv			eld Quality				
	Syste	matic	Unce	rtainty	Ran	dom		Syste	matic	Uncer	tainty	Rano	dom
Normal	Injection	High Field	Iniection	High Field	Iniection	High Field	Normal	Injection	High Field	Injection	High Field	Injection	High Field
2	0.000	0.000	0.000	0.000	10.000	10.000	2	0.000	0.000	0.000	0.000	10.000	10.000
3	0.000	0.000	0.820	0.820	0.820	0.820	3	0.000	0.000	0.820	0.820	0.820	0.820
4	0.000	0.000	0.570	0.570	0.570	0.570	4	0.000	0.000	0.570	0.570	0.570	0.570
5	0.000	0.000	0.420	0.420	0.420	0.420	5	0.000	0.000	0.420	0.420	0.420	0.420
6	-19.365	-0.236	1.100	1.100	1.100	1.100	6	-20.010	-0.370	1.100	1.100	1.100	1.100
7	0.000	0.000	0.190	0.190	0.190	0.190	7	0.000	0.000	0.190	0.190	0.190	0.190
8	0.000	0.000	0.130	0.130	0.130	0.130	8	0.000	0.000	0.130	0.130	0.130	0.130
9	0.000	0.000	0.070	0.070	0.070	0.070	9	0.000	0.000	0.070	0.070	0.070	0.070
10	3.566	-0.137	0.200	0.200	0.200	0.200	10	3.674	-0.128	0.200	0.200	0.200	0.200
11	0.000	0.000	0.026	0.026	0.026	0.026	11	0.000	0.000	0.026	0.026	0.026	0.026
12	0.000	0.000	0.018	0.018	0.018	0.018	12	0.000	0.000	0.018	0.018	0.018	0.018
13	0.000	0.000	0.009	0.009	0.009	0.009	13	0.000	0.000	0.009	0.009	0.009	0.009
14	0.136	-0.864	0.023	0.023	0.023	0.023	14	0.160	-0.866	0.023	0.023	0.023	0.023
Skew							Skew						
2	-1.254	-1.254	0.000	0.000	10.000	10.000	2	-0.836	-0.836	0.000	0.000	10.000	10.000
3	0.000	0.000	0.650	0.650	0.650	0.650	3	0.000	0.000	0.650	0.650	0.650	0.650
4	0.000	0.000	0.650	0.650	0.650	0.650	4	0.000	0.000	0.650	0.650	0.650	0.650
5	0.000	0.000	0.430	0.430	0.430	0.430	5	0.000	0.000	0.430	0.430	0.430	0.430
6	0.088	0.088	0.310	0.310	0.310	0.310	6	0.059	0.059	0.310	0.310	0.310	0.310
7	0.000	0.000	0.190	0.190	0.190	0.190	7	0.000	0.000	0.190	0.190	0.190	0.190
8	0.000	0.000	0.110	0.110	0.110	0.110	8	0.000	0.000	0.110	0.110	0.110	0.110
9	0.000	0.000	0.080	0.080	0.080	0.080	9	0.000	0.000	0.080	0.080	0.080	0.080
10	0.003	0.003	0.040	0.040	0.040	0.040	10	0.002	0.002	0.040	0.040	0.040	0.040
11	0.000	0.000	0.026	0.026	0.026	0.026	11	0.000	0.000	0.026	0.026	0.026	0.026
12	0.000	0.000	0.014	0.014	0.014	0.014	12	0.000	0.000	0.014	0.014	0.014	0.014
13	0.000	0.000	0.010	0.010	0.010	0.010	13	0.000	0.000	0.010	0.010	0.010	0.010
14	-0.009	-0.009	0.005	0.005	0.005	0.005	14	-0.006	-0.006	0.005	0.005	0.005	0.005

June 25, 2019

HL-LHC D1 and D2 Field quality tables

HL-LHC TDR V0.1

	Separation dipole D1 field quality version 1 - November 6 2012 - R_{ref} =50 mm									Recombination dipole D2 field quality version 1.4 - October 1 2013 - R_{ref} =35 mm								5 mm	
	Systematic			Uncertainty Random			Systematic					Uncertainty		Random					
Normal	Geometric	Saturation	Persistent	Injection	High Field	Injection	High Field	Injection	High Field	Normal	Geometric	Saturation	Persistent	Injection	High Field	Injection	High Field	Injection	High Field
2	0.000	0.000	0.000	0.000	0.000	0.200	0.200	0.200	0.200	2	0.000	25.000	0.000	0.000	25.000	0.200	2.500	0.200	2.500
3	-1.800	0.900	-14.200	-16.000	-0.900	0.727	0.727	0.727	0.727	3	18.000	-15.000	-14.200	3.800	3.000	0.727	-1.500	0.727	-1.500
4	0.000	0.000	0.000	0.000	0.000	0.126	0.126	0.126	0.126	4	-8.000	10.000	0.000	-8.000	2.000	0.126	0.200	0.126	0.200
5	0.500	-0.500	-1.000	-0.500	0.000	0.365	0.365	0.365	0.365	5	4.000	-5.000	-1.000	3.000	-1.000	0.365	-0.500	0.365	-0.500
6	0.000	0.000	0.000	0.000	0.000	0.060	0.060	0.060	0.060	6	0.000	0.000	0.000	0.000	0.000	0.060	0.060	0.060	0.060
7	1.600	-1.200	-0.700	0.900	0.400	0.165	0.165	0.165	0.165	7	0.800	-1.000	-0.700	0.100	-0.200	0.165	0.165	0.165	0.165
8	0.000	0.000	0.000	0.000	0.000	0.027	0.027	0.027	0.027	8	0.000	0.000	0.000	0.000	0.000	0.027	0.027	0.027	0.027
9	-0.680	0.090	0.020	-0.660	-0.590	0.065	0.065	0.065	0.065	9	0.000	0.090	0.020	0.020	0.090	0.065	0.065	0.065	0.065
10	0.000	0.000	0.000	0.000	0.000	0.008	0.008	0.008	0.008	10	0.000	0.000	0.000	0.000	0.000	0.008	0.008	0.008	0.008
11	0.440	0.030	0.000	0.440	0.470	0.019	0.019	0.019	0.019	11	0.000	0.030	0.000	0.000	0.030	0.019	0.019	0.019	0.019
12	0.000	0.000	0.000	0.000	0.000	0.003	0.003	0.003	0.003	12	0.000	0.000	0.000	0.000	0.000	0.003	0.003	0.003	0.003
13	0.000	0.000	0.000	0.000	0.000	0.006	0.006	0.006	0.006	13	0.000	0.000	0.000	0.000	0.000	0.006	0.006	0.006	0.006
14	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	14	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001
15	-0.040	0.000	0.000	-0.040	-0.040	0.002	0.002	0.002	0.002	15	0.000	0.000	0.000	0.000	0.000	0.002	0.002	0.002	0.002
Skew										Skew									
2	0.000	0.000	0.000	0.000	0.000	0.679	0.679	0.679	0.679	2	0.000	0.000	0.000	0.000	0.000	0.679	0.679	0.679	0.679
3	0.000	0.000	0.000	0.000	0.000	0.282	0.282	0.282	0.282	3	0.000	0.000	0.000	0.000	0.000	0.282	0.282	0.282	0.282
4	0.000	0.000	0.000	0.000	0.000	0.444	0.444	0.444	0.444	4	0.000	0.000	0.000	0.000	0.000	0.444	0.444	0.444	0.444
5	0.000	0.000	0.000	0.000	0.000	0.152	0.152	0.152	0.152	5	0.000	0.000	0.000	0.000	0.000	0.152	0.152	0.152	0.152
6	0.000	0.000	0.000	0.000	0.000	0.176	0.176	0.176	0.176	6	0.000	0.000	0.000	0.000	0.000	0.176	0.176	0.176	0.176
7	0.000	0.000	0.000	0.000	0.000	0.057	0.057	0.057	0.057	7	0.000	0.000	0.000	0.000	0.000	0.057	0.057	0.057	0.057
8	0.000	0.000	0.000	0.000	0.000	0.061	0.061	0.061	0.061	8	0.000	0.000	0.000	0.000	0.000	0.061	0.061	0.061	0.061
9	0.000	0.000	0.000	0.000	0.000	0.020	0.020	0.020	0.020	9	0.000	0.000	0.000	0.000	0.000	0.020	0.020	0.020	0.020
10	0.000	0.000	0.000	0.000	0.000	0.025	0.025	0.025	0.025	10	0.000	0.000	0.000	0.000	0.000	0.025	0.025	0.025	0.025
11	0.000	0.000	0.000	0.000	0.000	0.007	0.007	0.007	0.007	11	0.000	0.000	0.000	0.000	0.000	0.007	0.007	0.007	0.007
12	0.000	0.000	0.000	0.000	0.000	0.008	0.008	0.008	0.008	12	0.000	0.000	0.000	0.000	0.000	0.008	0.008	0.008	0.008
13	0.000	0.000	0.000	0.000	0.000	0.002	0.002	0.002	0.002	13	0.000	0.000	0.000	0.000	0.000	0.002	0.002	0.002	0.002
14	0.000	0.000	0.000	0.000	0.000	0.003	0.003	0.003	0.003	14	0.000	0.000	0.000	0.000	0.000	0.003	0.003	0.003	0.003
15	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	15	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001

CERN

FCC Week 19 | Low Luminosity Experimental insertions

June 25, 2019