

Introduction

• Critical Current Measurements of Cables under Transverse Load

- Computational Modeling
- Conclusions

Introduction Strain dependence of Nb₃Sn

- Superconducting performance of Nb₃Sn are strongly dependent on the superconductor strain state
- In the case of **applied axial strain**, with a good approximation we can write

 $B_{c2}(T, \varepsilon) = B_{c2}(T, \theta) s(\varepsilon)$ Where $s(\varepsilon)$ is the *strain function* that ranges between 0 and 1

$$J_c(B, T, \varepsilon) = C(T) b^{-0.5} (1-b)^2$$
 Where: $b = \frac{B}{B_{c2}(T, \varepsilon)}$

• Before cracking the filaments, the same equation proved to be valid also in the case of transverse loads

RRP Cable based on 1-mm wires

Critical Current Reduction

• The **RRP** cable has still the same behavior of the PIT cable but it is **less sensitive** to transverse load

- > Onset permanent I_c reduction

 PIT: ~130 MPa
 RRP: ~170 MPa

 > Total I_c reduction at 11.6 T and 150 MPa

 PIT: ~ 20 %
 - 2. RRP: ~ 15 %

T. Wang, L. Chiesa, M. Takayasu, and B. Bordini, *Cryogenics* (*Guildf*)., vol. 63, pp. 275–281, 2014.

General Idea

G. Vallone, B. Bordini, and P. Ferracin, *IEEE Trans. Appl. Supercond.*, vol. 28, no. 4, 2018.

- 2D mechanical FEM \rightarrow strain field $\varepsilon \rightarrow$ scaling law $J_c(s(\varepsilon))$
- $s(\varepsilon) = s(I_1, J_2)$ [5] where I_1 is the first invariant of the strain tensor and J_2 is the second invariant of the deviatoric strain tensor

[5] B. Bordini, P. Alknes, L. Bottura, L. Rossi, and D. Valentinis," Supercond. Sci. Technol., vol. 26, no. 7, p. 075014, 2013.

Computational Modeling

Introduction – Aims of this work

Both models were quite successful in reproducing the experimental results however, they rely on some assumptions that deserve to be further investigated

Aim

Study these assumptions to enhance the understanding of the physical phenomena involved. Most relevant assumptions:

- 1) longitudinal strains/stresses (plane strain [6] and the plane stress [7])
- 2) the necessary strain amplification factor when the wire layout is simplified and the material properties are homogenized [7]
- 3) no current redistribution

How?

A 3D FEM model with no geometrical and material assumptions and no hypothesis on the longitudinal strain

Add, in the future, an electric 3D model to simulate the possible current redistribution

[6] T. Wang, L. Chiesa, M. Takayasu, and B. Bordini, "Cryogenics (Guildf)., vol. 63, pp. 275–281, 2014. [7] G. Vallone, B. Bordini, and P. Ferracin, IEEE Trans. Appl. Supercond., vol. 28, no. 4, 2018.

- High computational costs: smallest representative segment = 2.5 mm long
- No homogenizations: All the 192 filaments are modeled
- The strand is twisted (15 mm)

Brussels 27/6/2019

Computational Modeling Boundary conditions: along the strand

- Groove and anvil are treated as rigid bodies: modeled as boundary constraints
 - Lateral and bottom faces are free to slide on their respective planes
 - Progressive, compressive displacement on the top face

Computational Modeling

Boundary conditions: strand ends

Two possible set of boundary conditions on the strand ends to study the extreme cases:

Clamped and symmetric by translation: continuity $u_1 = u_2$

Free to elongate and symmetric by translation: $u_1 - u_2 = [q \quad 0 \quad 0]'$ with qsuch that forces and couples are null: $F_1 = F_2 = M_1 = M_2 = 0$

Brussels 27/6/2019

Computational Modeling Results: *I_c* reduction in round PIT wires

[4] C. Calzolaio et al., Supercond. Sci. Technol., vol. 28, no. 5, pp. 1–11, 2015.

Computational Modeling Rolled strand: deformed configuration

- Rolled strand (15% def.) are more representative of the geometry of the strand in a Rutherford cable
- In order to study this case, the deformed configuration is required
- An additional simulation of rolling is performed: the strand is deformed plastically between 2 rigid plates

Rolling

ING RE

Computational Modeling Results *I_c* reduction PIT wires: Round vs 15% Rolled

- The model reproduces the lower sensitivity of 15% rolled samples with respect to round wire samples
 - performance > The same reduction is obtained at 40 MPa larger loads
 - > The model is in qood agreement the with experimental data from the University of Geneva

50.00

100.00

Load [MPa]

150.00

200.00

Conclusions

- The effect of the transverse load on the superconducting performance of Nb₃Sn cables is relevant already at 150 MPa and has to be taken into account in the design of high field accelerator magnets
- Before cracking the filaments (at least up to 180 MPa), the critical current reduction:
 - ➤ is mainly due to a decrease of the upper critical field and can be described with the well established scaling laws developed for the case of applied axial strain $I_c(B,T,\varepsilon) = I_c(B,T,s(\varepsilon))$ where *s* is the *strain-function*

can be estimated with mechanical Finite Element Method models coupled with the exponential strain-function developed at CERN

