

Recent progress on HTS conductors for

high-field magnets: critical surface studies

<u>C. Senatore</u>, M. Bonura, D. Zurmuehle

Department of Quantum Matter Physics, University of Geneva, Switzerland

J. Ferradas, L. Rossi CERN, Switzerland

Outline

Activities on HTS for HEP magnets in EC programs

• R&D goals from FP7 (EUCARD² to h2020 ARIES

Overview of the measurement campaign on R&D YBCO tapes from BRUKER

• Transport I_c measurements up to 2 kA in variable temperature and at various orientations

Very recent tests on new high-performance REBCO tapes from **Fujikura** and **SuperOx**

Conclusions

Towards 20+ T dipoles: the call for HTS Advances in R&D from FP7 EUCARD² to h2020 ARIES

EUCARD² has developed

• a HTS CONDUCTOR for accelerator dipoles (10 kA-class cable)

• a DIPOLE DEMONSTRATOR with accelerator quality (5 T, 40 mm bore)

Tests of the coils as stand alone and in-field are ongoing

van Nugteren et al., SuST <u>31</u> (2018) 06502

ARIES is building on the shoulders of EUCARD² The objectives of ARIES are:

- Set up a NEW process in BRUKER to:
 - Increase J_e by a factor 2 wrt EUCARD²

from J_e (4.2 K, 20 T) = 400-600 A/mm²

to J_e (4.2 K, 20 T) = 800-1200 A/mm²

- Produce in BRUKER some 600 m of tapes
- Use in a winding at (very much like EUCARD²)
- Reduce the cost by a factor 2 in the production (at BRUKER)

The partners:

L. Rossi Task Leader

Deputy Task Leader

Th. LecrevisseM.

C. Senatore

U. Betz, A. Usoskin Industrial Partner

How to get there?

- Increase the layer J_c of YBCO
- Increase the thickness of YBCO
- Reduce the thickness of the substrate 100 μ m SS \rightarrow 50 μ m SS

ARIES project @ Bruker HTS

<u>PROCESSING 50 μm</u> x 12 mm x 29 m HTS tape

- I_c measurement from tape sample (start position) $I_c(77 \text{ K}, \text{ s.f.}) = 174 \text{ A}$
- Average I_c value from Hall-Probe-Measurement (TapeStar) of the 29 m long HTS tape I_c(77 K, s.f.) = 161 A
- 2 x I_c drops detected in the range 23-25 m

Courtesy of A. Usoskin, BHTS

ARIES project @ Bruker HTS General appearance of HTS tapes with 50 µm SS substrates The new tapes reveal a strong curvature across the width (tape bow) In the ABAD process biaxial texturing is achieved in a **YBCO** tape $\sim 2 \mu m$ -thick YSZ layer (IBAD uses a thinner MgO layer) Thermal contraction mismatch YSZ ~2 μm SS 50 µm coolina Reduce the bow by depositing YSZ on the two sides of the tapes

Curvature does not exceed the critical one: no deterioration of I_c is observed

Courtesy of A. Usoskin, BHTS

Measurement campaign on the ARIES tapes

Width	DD-YBCO thickness	Stabilizer	Orientation	Temperatures
12 mm	1.95µm	2x 20µm Cu	90°	4.2К — 20К — 30К — 40К
	1.78µm	2x 20μm Cu	90°	4.2K – 20K – 30K
4 mm			10°	4.2K – 20K – 30K
			0°	4.2K – 10K – 20K– 30K – 40K
12	1.9-2.0 μm	2x 20μm Cu	90°	4.2K – 10K – 20K– 30K – 40K
12 mm			0°	40 K
12 mm	1.9-2.0 μm	2x 7μm Cu	90°	4.2K
	Width 12 mm 4 mm 12 mm 12 mm	Width DD-YBCO thickness 12 mm 1.95μm 4 mm 1.78μm 12 mm 1.9-2.0μm 12 mm 1.9-2.0μm	Width DD-YBCO thickness Stabilizer 12 mm 1.95μm 2x 20μm Cu 4 mm 1.78μm 2x 20μm Cu 12 mm 1.9-2.0μm 2x 20μm Cu 12 mm 1.9-2.0μm 2x 20μm Cu	WidthDD-YBCO thicknessStabilizerOrientation12 mm1.95 μ m2x 20 μ m Cu90°4 mm1.78 μ m2x 20 μ m Cu90°10°0°0°12 mm1.9-2.0 μ m2x 20 μ m Cu90°12 mm1.9-2.0 μ m2x 7 μ m Cu90°12 mm1.9-2.0 μ m2x 7 μ m Cu90°

All BRUKER tapes with the new 50 μ m-thick stainless steel substrate

Critical current tests up to 2 kA on 12mm tapes Magnetic fields up to 19 T (21 T) and temperatures up to 40 K

- Possible to test long samples (> 120 mm) at various angles: θ = 0°, 5°, 7.5°, 10° and 90°
- Active stabilization of the sample temperature

C. Barth, M. Bonura, and CS, IEEE TASC 28 (2018) 9500206

Reproducibility of performance: $I_c(B, \theta = 90^\circ, T = 4.2 \text{ K})$

The 4mm tape has a slightly lower decrease of I_c with B The maximum measured spread in I_c is ~10% (at 19 T)

Engineering current density $J_e(B)$ – Temperature dep.

Reducing the temperature by 10 K, J_e is increased by

- a factor 1.6 in perpendicular orientation
- a factor 1.7 in parallel orientation

* Exponential temperature dependence of $I_c \rightarrow CS$ et al., SuST <u>29</u> (2016) 014002

Engineering current density J_e(B,T=4 K) Performance target

Tape Q065-18 (with 2x 7μm Cu) reached 1150 A/mm² at 4.2 K, 19 T, 90°

Very recent high-performance REBCO tapes from Fujikura and SuperOx

	Tape ID	Width	REBCO thickness	Substrate/ Stabilizer	Orientation	Temperatures
ikura	FESC-SCH04(40) 19-0008	4 mm	2.5 μm	50 μm Hastelloy 2x 40 μm Cu	90°	4.2 K – 20 K
F uj	FESC-SCH04 19-0007	4 mm	2.5 μm	50 μm Hastelloy 2x 20 μm Cu	Ongo	oing tests
XOr	#287-L	4 mm	3.1 μm	100 μm Hastelloy 2x 20 μm Cu	90°	4.2 K – 20 K
Supe	#337-R	4 mm	2.7 μm	40 μm Hastelloy 2x 5 μm Cu	90°	4.2K – 20K

<u>New SuperOx tapes courtesy of Alexander MOLODYK</u>

Fujikura tapes courtesy of Simon RICHARDSON and Masanori DAIBO

The REBCO layer is deposited by PLD for the three manufacturers Fujikura FESC tape is based on EuBCO with BHO APC SuperOx introduced a new composition, still undisclosed

Layer critical current density J_c(B,T=4 K) Comparison of 3 manufacturers

At 4.2 K, 19 T the tapes do not differ significantly in terms of layer is J_c All lie between 40 and 50 kA/mm²

Towards HTS-based dipoles operating at T >1.9 K ??

BRUKER tape Q064-18, 50 μ m stainless steel, 2x 20 μ m Cu, 2 μ m YBCO Engineering current density in perpendicular field orientation

Summary

- High-J_e HTS conductors are setting the grounds for accelerator magnets in the 20 T range
- The ARIES R&D tapes with thinner substrate (50 μm stainless steel) from BRUKER exhibit very reproducible performance
- In spite of the tape shape, we got $J_e \approx 1150 \text{ A/mm}^2 @ 4.2 \text{ K}$, 19 T
- Fujikura new tape with EuBCO + BHO, with J_e ≈ 1300 A/mm² @ 4.2 K, 19 T, is a commercial product
- SuperOx implemented a new composition and its new tape reached $J_e \approx 2000 \text{ A/mm}^2 @ 4.2 \text{ K}$, 19 T and 1000 A/mm² @ 20 K, 19 T
- In light of the present results, should we target also accelerator magnets operating at higher temperatures?

Thank you for the attention !

Carmine SENATORE carmine.senatore@unige.ch http://supra.unige.ch

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 730871

Performance overview (2016): $J_c(s.f.,77K)$ vs. $J_c^{\perp}(19T,4.2K)$

Performance overview (2016): $J_c(s.f.,77K)$ vs. $J_c^{\perp}(19T,4.2K)$ Updated with the most recent results (2019)

Temperature dependence of J_e

T* ranges between 18 K and 29 K, with a maximum at 4 T

I_c tests in gas flow Active temperature stabilization

Q023 – 12 mm in perpendicular field

Q056-18: 4 mm, 50 μm SS + 2x 20 μm Cu

