Recent progress on HTS conductors for high-field magnets: critical surface studies

C. Senatore, M. Bonura, D. Zurmuehle
Department of Quantum Matter Physics, University of Geneva, Switzerland

J. Ferradas, L. Rossi
CERN, Switzerland

U. Betz, A. Usoskin
Bruker HTS, Germany
Outline

Activities on HTS for HEP magnets in EC programs
 • **R&D goals from FP7** [EuCARD² to h2020 ARIES]

Overview of the measurement campaign on R&D YBCO tapes from **BRUKER**
 • *Transport* \(I_c\) measurements up to 2 kA in variable temperature and at various orientations

Very recent tests on new high-performance REBCO tapes from **Fujikura and SuperOx**

Conclusions
Towards 20+ T dipoles: the call for HTS

Advances in R&D from FP7 EuCARD² to h2020 ARIES

EuCARD² has developed

- a HTS CONDUCTOR for accelerator dipoles (10 kA-class cable)

- a DIPOLE DEMONSTRATOR with accelerator quality (5 T, 40 mm bore)

Tests of the coils as stand alone and in-field are ongoing

van Nugteren et al., SuST 31 (2018) 06502

ARIES is building on the shoulders of **EuCARD²**

The objectives of **ARIES** are:

- **Set up a NEW process in BRUKER to:**
 - *Increase Jₑ by a factor 2 wrt EuCARD²*
 - From $Jₑ (4.2 \text{ K, } 20 \text{ T}) = 400-600 \text{ A/mm}^2$ to $Jₑ (4.2 \text{ K, } 20 \text{ T}) = 800-1200 \text{ A/mm}^2$

- **Produce in BRUKER some 600 m of tapes**

- **Use in a winding at CERN (very much like EuCARD²)**

- **Reduce the cost by a factor 2 in the production (at BRUKER)**

The partners:

- L. Rossi
 Task Leader
- Th. Lecrevisse
 Deputy Task Leader
- M. Dhallé
- C. Senatore
- U. Betz, A. Usoskin
 Industrial Partner
Performance target for YBCO layer

How to get there?

- Increase the layer J_c of YBCO
- Increase the thickness of YBCO
- Reduce the thickness of the substrate $100 \, \mu\text{m} \text{ SS} \rightarrow 50 \, \mu\text{m} \text{ SS}$

Double disordered YBCO
Usoskin et al., SuST 28 (2015) 114007

J_e [A/mm2] vs Magnetic field [T]

@4.2K, $B//c$
PROCESSING **50 µm** x 12 mm x 29 m HTS tape

- I_c measurement from tape sample (start position) $I_c(77 \text{ K, s.f.}) = 174 \text{ A}$
- Average I_c value from Hall-Probe-Measurement (TapeStar) of the 29 m long HTS tape $I_c(77 \text{ K, s.f.}) = 161 \text{ A}$
- 2 x I_c drops detected in the range 23-25 m

Courtesy of A. Usoskin, BHTS
ARIES project @ Bruker HTS

General appearance of HTS tapes with 50 µm SS substrates

The new tapes reveal a strong curvature across the width (tape bow)

In the ABAD process biaxial texturing is achieved in a ~2 µm-thick YSZ layer (IBAD uses a thinner MgO layer)

Reduce the bow by depositing YSZ on the two sides of the tapes

Curvature does not exceed the critical one: no deterioration of I_c is observed

Courtesy of A. Usoskin, BHTS
Measurement campaign on the ARIES tapes

<table>
<thead>
<tr>
<th>Tape ID</th>
<th>Width</th>
<th>DD-YBCO thickness</th>
<th>Stabilizer</th>
<th>Orientation</th>
<th>Temperatures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q023</td>
<td>12 mm</td>
<td>1.95µm</td>
<td>2x 20µm Cu</td>
<td>90°</td>
<td>4.2K – 20K – 30K – 40K</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90°</td>
<td>4.2K – 20K – 30K</td>
</tr>
<tr>
<td>Q056</td>
<td>4 mm</td>
<td>1.78µm</td>
<td>2x 20µm Cu</td>
<td>90°</td>
<td>4.2K – 20K – 30K</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0°</td>
<td>4.2K – 10K – 20K– 30K– 40K</td>
</tr>
<tr>
<td>Q064</td>
<td>12 mm</td>
<td>1.9-2.0µm</td>
<td>2x 20µm Cu</td>
<td>90°</td>
<td>4.2K – 10K – 20K– 30K– 40K</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0°</td>
<td>40K</td>
</tr>
<tr>
<td>Q065</td>
<td>12 mm</td>
<td>1.9-2.0µm</td>
<td>2x 7µm Cu</td>
<td>90°</td>
<td>4.2K</td>
</tr>
</tbody>
</table>

All Bruker tapes with the new 50µm-thick stainless steel substrate
Critical current tests up to 2 kA on 12mm tapes

Magnetic fields up to 19 T (21 T) and temperatures up to 40 K

- Possible to test long samples (> 120 mm) at various angles: $\theta = 0^\circ, 5^\circ, 7.5^\circ, 10^\circ$ and 90°

- Active stabilization of the sample temperature

C. Barth, M. Bonura, and CS, IEEE TASC 28 (2018) 9500206
Reproducibility of performance: $I_c(B, \theta = 90^\circ, T = 4.2\, K)$

The 4mm tape has a slightly lower decrease of I_c with B

The maximum measured spread in I_c is $\sim10\%$ (at 19 T)
Reducing the temperature by 10 K, \(J_e \) is increased by

- a factor 1.6 in **perpendicular orientation**
- a factor 1.7 in **parallel orientation**

Exponential temperature dependence of \(I_c \) → CS et al., SuST 29 (2016) 014002
Engineering current density $J_e(B, T=4 \, K)$

Performance target

Tape Q065-18 (with 2x 7μm Cu) reached **1150 A/mm2** at 4.2 K, 19 T, 90°
Very recent high-performance REBCO tapes from Fujikura and SuperOx

<table>
<thead>
<tr>
<th>Tape ID</th>
<th>Width</th>
<th>REBCO thickness</th>
<th>Substrate/Stabilizer</th>
<th>Orientation</th>
<th>Temperatures</th>
</tr>
</thead>
<tbody>
<tr>
<td>FESC-SCH04(40)</td>
<td>4 mm</td>
<td>2.5 µm</td>
<td>50 µm Hastelloy 2x 40 µm Cu</td>
<td>90°</td>
<td>4.2K – 20K</td>
</tr>
<tr>
<td>19-0008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FESC-SCH04</td>
<td>4 mm</td>
<td>2.5 µm</td>
<td>50 µm Hastelloy 2x 20 µm Cu</td>
<td>Ongoing tests</td>
<td></td>
</tr>
<tr>
<td>19-0007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#287-L</td>
<td>4 mm</td>
<td>3.1 µm</td>
<td>100 µm Hastelloy 2x 20 µm Cu</td>
<td>90°</td>
<td>4.2K – 20K</td>
</tr>
<tr>
<td>#337-R</td>
<td>4 mm</td>
<td>2.7 µm</td>
<td>40 µm Hastelloy 2x 5 µm Cu</td>
<td>90°</td>
<td>4.2K – 20K</td>
</tr>
</tbody>
</table>

New SuperOx tapes courtesy of Alexander MOLODYK

Fujikura tapes courtesy of Simon RICHARDSON and Masanori DAIBO
Engineering current density $J_e(B,T=4\text{ K})$

Comparison of 3 manufacturers

The REBCO layer is deposited by PLD for the three manufacturers

Fujikura FESC tape is based on EuBCO with BHO APC

SuperOx introduced a new composition, still undisclosed
Layer critical current density $J_c(B,T=4 \ K)$

Comparison of 3 manufacturers

At 4.2 K, 19 T the tapes do not differ significantly in terms of layer is J_c

All lie between 40 and 50 kA/mm2
Towards HTS-based dipoles operating at $T > 1.9\,\text{K}$

Diagram

- **Q064-18, 2x 20μm Cu**
 - I_c @ 1 μV/cm
 - $\theta = 90°$

Graph

- Engineering current density [A/mm2] vs. Magnetic field [T]

- **LHC Nb-Ti wire @ 1.9 K**
- **HiLumi Nb$_3$Sn wire @ 1.9 K**
- **LHC dipole operating point**
- **HiLumi dipole operating point**

Notes

- **BRUKER tape Q064-18, 50μm stainless steel, 2x 20μm Cu, 2μm YBCO**
- **Engineering current density in perpendicular field orientation**
Summary

- High-J_e HTS conductors are setting the grounds for accelerator magnets in the 20 T range

- The R&D tapes with thinner substrate (50 µm stainless steel) from exhibit very reproducible performance

- In spite of the tape shape, we got $J_e \approx 1150 \text{ A/mm}^2$ @ 4.2 K, 19 T

- Fujikura new tape with EuBCO + BHO, with $J_e \approx 1300 \text{ A/mm}^2$ @ 4.2 K, 19 T, is a commercial product

- SuperOx implemented a new composition and its new tape reached $J_e \approx 2000 \text{ A/mm}^2$ @ 4.2 K, 19 T and 1000 A/mm² @ 20 K, 19 T

- In light of the present results, should we target also accelerator magnets operating at higher temperatures?
Thank you for the attention!

Carmine SENATORE

carmine.senatore@unige.ch

http://supra.unige.ch

This project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement No 730871
Performance overview (2016): $J_c(s.f., 77K)$ vs. $J_c^\perp(19T, 4.2K)$
Performance overview (2016): \(J_c(s.f., 77K) \) vs. \(J_c^\perp(19T, 4.2K) \)

Updated with the most recent results (2019)
Temperature dependence of J_e

Temperature scaling \[J_e(B, T) = J_e(B, T = 0) \exp \left(-\frac{T}{T^*} \right) \Rightarrow \frac{J_e(B, T_1)}{J_e(B, T_2)} = \exp \left(\frac{T_1 - T_2}{T^*} \right) \]

T^* ranges between 18 K and 29 K, with a maximum at 4 T
I_c tests in gas flow

Active temperature stabilization

Q023 – 12 mm in perpendicular field

Sample temperature [K]

Current [A]

Voltage [µV]

Current [A]
Q056-18: 4 mm, 50 µm SS + 2x 20 µm Cu

- **T2290**: 100 µm SS + 2x 20 µm Cu
 - $E = 187$ GPa, $R_{p0.2} = 736$ MPa

- **Q056-18**: 50 µm SS + 2x 20 µm Cu
 - $E = 173$ GPa, $R_{p0.2} = 499$ MPa

<table>
<thead>
<tr>
<th>Material</th>
<th>RRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2290</td>
<td>23</td>
</tr>
<tr>
<td>Q056-18</td>
<td>57</td>
</tr>
</tbody>
</table>