DE LA RECHERCHE À L'INDUSTRIE

Lattice integration

Antoine CHANCE

CEA/DRF/IRFU/DACM

FCC week 2019 26th June 2019

Study (EuroLIC.0) project has received funding from the European Union's Horizon 2202 research and innovation programme under grant No 654305. The information herein only reflects the Views of its authors and the European Commission is not responsible for any use that may be made of the information.

The European Circular Energy-Frontier Collider Study (EuroCirCol) project

www.cea.fr

Cea Status at the FCC week 2018

- New arc FODO cells:
 - FODO cells a bit longer.
 - ▶ *b*₂ up to 50 units in the main dipoles.
 - More realistic magnet fields.
 - Courtesy D. Schoerling's group
 - Longer inter-dipole distance.
 - 1.36 m → 1.5 m
 - $\Rightarrow B_{MB}^{\uparrow}$
- New experimental insertion region:
 - $L = 1.5 \text{ km} \rightarrow L = 1.4 \text{ km}.$
 - LAR a bit longer.
 - $\Rightarrow B_{MB}\downarrow$
 - Alternative inner triplet.

• $B_{MB} = 15.71 \text{ T} \rightarrow B_{MB} = 15.96 \text{ T}$

cea Main changes

- \blacktriangleright New intra-beam distance: 204 mm \rightarrow 250 mm
 - \Rightarrow New b_2 value in the dipoles: 0 at collision and 6 units at injection.
 - Reduced integrated gradient in the main quadrupoles MQs.
 - ► Shorter MQs and longer main dipoles: reduced peak dipole field.
- Insertions have been updated:
 - Updated interaction region with enlarged intra-beam distance.
 - ► Updated injection + low-luminosity region.
 - New extraction section.
 - ► Momentum collimation section with enlarged dispersion (increase by 25% at collision and by 60% at injection).
 - ► Updated RF insertions (new phase advance in the FODO cells).
- ► Smaller optical functions in the dispersion suppressors.
- ► No more missing dipole at the middle of TSS to get empty place (civil engineering has put a local cavern nearby).
- New method to set the global tune and phase advances between IPs by playing with FODO cells of long arcs.
- Updated aperture model (thanks to R. Martin and WP4).

- MAD-X files automatically generated with python for the integration of the different lattices and of the insertions.
- ► The FODO cells of the arcs are generated according to some input parameters (e.g. range of the cell length).
- The dispersion suppressors are generated.
- The matching macros are generated.
- Some matching sections between the dispersion suppressors and insertions can be added.
- The insertions are optimized by different groups.
- The global tune is matched with the phase advance of the FODO cells in the long arcs.
 - Phase advances of the FODO cells in the SAR: 90°.
 - ▶ Phase advances of the FODO cells in the LAR: $90 + \epsilon_{x,y}^{\circ}$.
- ► The chromaticity is corrected by two sextupole families.

Cea Arc cell: baseline

- \Rightarrow The FODO cell is 213.04 m long.
 - The distance inter-dipole is 1.5 m.
 - ► The main dipole MB is 14.19 m long.
 - ► The maximum dipole field is 15.81 T with an aperture of 50 mm.
 - ▶ MCS has the same length as in LHC: 0.11 m.
 - ▶ MCD has been added at every other dipole to correct *b*₅.
 - ▶ MQ is shorter (6.4 m) with a quadrupole gradient of 358 T/m.
 - ► The maximum corrector field is 4 T.

Cea Arc cell: baseline

- \Rightarrow The FODO cell is 213.04 m long.
 - The distance inter-dipole is 1.5 m.
 - The main dipole MB is 14.19 m long.
 - ► The maximum dipole field is 15.81 T with an aperture of 50 mm.
 - MCS has the same length as in LHC: 0.11 m.
 - ▶ MCD has been added at every other dipole to correct *b*₅.
 - ▶ MQ is shorter (6.4 m) with a quadrupole gradient of 358 T/m.
 - ► The maximum corrector field is 4 T.

Cea Arc cell: baseline

- \Rightarrow The FODO cell is 213.04 m long.
 - The distance inter-dipole is 1.5 m.
 - The main dipole MB is 14.19 m long.
 - ► The maximum dipole field is 15.81 T with an aperture of 50 mm.
 - MCS has the same length as in LHC: 0.11 m.
 - ▶ MCD has been added at every other dipole to correct *b*₅.
 - MQ is shorter (6.4 m) with a quadrupole gradient of 358 T/m.
- The maximum corrector field is 4 T.

Courtesy: D. Schoerling

Magnet type	Distance (m)	Remarks
MB-MB	1.5	May be longer if stronger MCS required
MB-SSS	1.3	Does not include BPMs
MQ-Other	0.35	Other magnetic elements in SSS
Other-Other	0.35	

Magnet type	# per	Max. Strength	Length	SC ma-	LHC nominal	LHC strength
	beam			terial	strength (56	scaled to 50
					mm aperture)	mm aperture
Main Dipole (MB)	4672	16 T	14.2 m	Nb ₃ Sn	8.33 T	8.33 T
Main Quadrupole (MQ)	744	360 T/m	6.4 m	Nb ₃ Sn	223 T/m	250 T/m
Trim Quadrupole (MQT)	88	220 T/m	0.5 m	Nb-Ti	123 T/m	140 T/m
Skew Quadrupole (MQS)	96	220 T/m	0.5 m	Nb-Ti	123 T/m	140 T/m
Main Sextupole (MS)	696	7000 T/m ²	1.2 m	Nb-Ti	4430 T/m ²	5560 T/m ²
Main Octupole (MO)	480	200,000 T/m ³	0.5 m	Nb-Ti	63,000 T/m ³	90,000 T/m ³
Sextupole Corrector (MCS)	4672	3000 T/m ²	0.11 m	Nb-Ti	1630 T/m ²	2050 T/m ²
Decapole Corrector (MCD)	2336	2.8×10 ⁶ T/m ⁴	0.07 m	Nb-Ti	4.3×10	⁵ T/m ⁴
Dipole Corrector (MCB)	792	4 T	1.2 m	Nb-Ti	3 T	3 T
DIS Trim Quadrupole (MQTL)	48	220 T/m	2.2 m	Nb-Ti	129 T/m	145 T/m
DIS Quadrupole (MQDA)	48	360 T/m	9.1 m	Nb ₃ Sn	129 T/m	145 T/m

Antoine CHANCE

Arc FODO cell

cea Insertions: main experiments

- Version 7b of the EIR.
- ► *L** = 40 m.
- BPMs and correctors have been integrated.
- → see Martin: "EIR Optics"
- → see Van Riesen-Haupt: "EIR Alternative optics"

- Considered β^* :
 - 6.0 m (injection)
 - 4.6 m (baseline injection)
 - 1.1 m (baseline)
 - 0.3 m (ultimate)
 - 0.2 m (more ultimate)
 - 0.15 m (most ultimate)
 - 1.2 m/0.15 m (flat beam)

cea Insertions: main experiments

- Version 7b of the EIR.
- ► L* = 40 m.
- BPMs and correctors have been integrated.
- → see Martin: "EIR Optics"
- → see Van Riesen-Haupt: "EIR Alternative optics"

- Considered β^* :
 - 6.0 m (injection)
 - 4.6 m (baseline injection)
 - 1.1 m (baseline)
 - 0.3 m (ultimate)
 - 0.2 m (more ultimate)
 - 0.15 m (most ultimate)
 - 1.2 m/0.15 m (flat beam)

$\fbox{22}$ Insertions: injection + low- \mathscr{L} experiment

 Injection in the same section as the additional experiments.

Inj.+Exp. section: LSS B (@ collision)

► L* = 25 m

- New version of the insertion implemented.
- → see Hofer: "Low luminosity interaction regions"
- Considered β^* :
 - 27 m (injection)
 - 3 m (collision)

$\fbox{22}$ Insertions: injection + low- \mathscr{L} experiment

 Injection in the same section as the additional experiments.

► L* = 25 m

- New version of the insertion implemented.
- → see Hofer: "Low luminosity interaction regions"
- Considered β^* :
 - 27 m (injection)
 - 3 m (collision)

Inj.+Exp. section: LSS L (@ collision)

Antoine CHANCE

cea Insertions: collimation sections

FED

- Dedicated section to
 β-cleaning
- The DIS is optimized to enhance the losses coming from β and δ collimation.
- → see Bruce: "Status of FCC-hh collimation studies"
- → see Molson:"Collimation inefficiency"

 β -cleaning section: ESS J

- LHC-scaled δ-cleaning insertion
- Enlarged beam separation:
 250 mm → 420 mm.
- Enlarged dispersion (max: 3 m at collision, 4 m at injection).

cea Insertions: collimation sections

- Dedicated section to β -cleaning
- The DIS is optimized to enhance the losses coming from β and δ collimation.
- see Bruce: "Status of ECC-hh collimation studies"
- see Molson:"Collimation inefficiency"

 β -cleaning section: ESS J

- LHC-scaled δ -cleaning insertion
- Enlarged beam separation: $250 \text{ mm} \rightarrow 420 \text{ mm}.$
- Enlarged dispersion (max: 3 m at collision, 4 m at injection).

δ -cleaning section: LSS F injection

0'5 1.0

2.5

2.0

1.0

0.5

0.0

3 functions [km] 1.5

Cea Insertions: RF+extraction

- RF section is made of FODO cells: phase advances of 72° (to reduce dispersion peak in the DIS).
- Enlarged beam separation:
 250 mm → 420 mm.

- Dedicated section for the extraction (2.8 km).
- New version of this insertion has been integrated.
- → see Chmielinska: "Injection and extraction insertions"

cea Tuning and correction

- ▶ 3 schemes are currently implemented to tune the ring:
 - ▶ FODO cells of long are slightly detuned $(90^{\circ}+\epsilon)$. DIS are rematched.
 - Use of phase trombones in insertions.
 - ► Use of different phase advances in the long arcs to tune the machine and phase advances between IPs (baseline).
- Correction schemes have been implemented.
 - BPMs and dipole correctors are integrated in the lattice to correct the orbit. Additional BPMs in the insertions have been added.
 - Trim quadrupoles are integrated to correct the horizontal spurious dispersion, the β-beating and the dispersion-beating
 - Skew quadrupoles are used to correct the coupling (sets of 4 separated by 90° each) and the vertical spurious dispersion.
 - \rightarrow see Boutin: "Correction schemes".
- The dynamic aperture studies have shown that:
 - b_3 (coll + injection) and b_5 (injection) correctors are mandatory.
 - Phase advances between PA end PG have a big impact at collision.
 - → see Dalena: "Field Quality at injection for FCC-hh"
 - → see Cruz-Alaniz: "Dynamic aperture studies"
- Octupoles integrated for Landau damping and beam-beam correction.

Parameters		
Parameter		Value
Energy	TeV	50
Circumference	km	97.75
β^*	m	0.3
L*	m	40
α	10^{-4}	1.032
γtr	-	98.41
Q_X coll	-	109.31
Q_y coll	-	107.32
Q_X inj	-	109.28
Q_y inj	-	107.31
Q'_{X}	-	2
Q'_y	-	2
MB field	Т	15.81
MQ gradient	T/m	358
MS gradient	T/m^2	6974

Cea Arc aperture @ injection

- ► Contrary to LHC, the dipoles are assumed to be straight.
- A margin of 1.2 mm is added to the horizontal tolerance to handle the sagitta.
- Reduction of the beam-stay clear by 1.5σ because of the sagitta.

• Target: 13.4 σ at injection and 15.5 σ at collision.

- The selected dispersion suppressor is similar to LHC: best compromise between filling factor and flexibility.
- ► Two collimators (TCLD) of 1 meter are inserted to clean the beam at the arc entrance (the needed space is 5 meters for each TCLD).
- Bottleneck for the machine aperture (location of betatron and dispersion peaks).
- ▶ New constraints in the DIS to reduce betatron and dispersion peaks there. Shorter MQDA: 9.1 m. Longer MQTL: 2.2 m.

The selected dispersion suppressor is setween filling factor and flexibility.

- ► Two collimators (TCLD) of 1 meter a s^(m) (*10**(the arc entrance (the needed space is 5 meters for each TCLD).
- Bottleneck for the machine aperture (location of betatron and dispersion peaks).
- ▶ New constraints in the DIS to reduce betatron and dispersion peaks there. Shorter MQDA: 9.1 m. Longer MQTL: 2.2 m.

- The selected dispersion suppressor is similar to LHC: best compromise between filling factor and flexibility.
- ► Two collimators (TCLD) of 1 meter are inserted to clean the beam at the arc entrance (the needed space is 5 meters for each TCLD).
- Bottleneck for the machine aperture (location of betatron and dispersion peaks).
- New constraints in the DIS to reduce betatron and dispersion peaks there. Shorter MQDA: 9.1 m. Longer MQTL: 2.2 m.

Cea Interaction region aperture @ injection

Aperture

Cea Insertions aperture @ injection

Extraction: ESS D

Aperture

Cea Alternatives for the FCC-hh ring

- Alternative triplet for the experiment insertion has been integrated (and flat optics)
- → see Van Riesen-Haupt: "EIR Alternative optics"
- ▶ Phase advance of 60 degrees against 90 degrees (idea: E. Todesco).
 - The integrated quadrupole gradient is multiplied by $\frac{\sin 30^{\circ}}{\sin 45^{\circ}} \approx 0.7$.
 - With the same FODO cell length, the maximum quadrupole gradient is decreased from 360 T/m to 220 T/m.
 - ▶ With the same maximum gradient, the quadrupole can be shortened from 6.4 m to 4.5 m.
 - The dipoles are lengthened (by 0.33 m).
 - © The reached dipole field we can get is 15.44 T (against 15.81 T before).
 - © The correction schemes must be modified.
 - With a system of 6 trim quadrupoles with 60 degrees in between, possibility to correct beta-beating, dispersion beating, coupling (if skew),or tune as the system of 4 quadrupoles in the case of 90° by phase advance.
 - © The dispersion is enlarged: reduction of the beam stay clear.

cea Phase advance of 60 degrees

Apertures @3.3 TeV (90°)

$n_1 = 16.9 \rightarrow n_1$	1 = 12.9	below	the	target!
------------------------------	----------	-------	-----	---------

aranneters		
Parameter		Value
Energy	TeV	50
Circumference	km	97.75
β^*	m	0.3
L*	m	40
α	10^{-4}	2.068
γtr	-	69.54
Q_X coll	-	78.31
Q_y coll	-	75.32
Q_X inj	-	78.28
Q_y inj	-	75.31
Q'_{X}	-	2
Q'_y	-	2
MB field	Т	15.44
MQ gradient	T/m	360
MS gradient	T/m^2	3215

Daramatara

- Lattice has been updated:
 - b_2 is smaller in dipoles: 6 units at injection and 0 unit at collision.
 - MQs are shorer and dipoles are longer with a reduced peak field (15.81 T).
 - ► Additional correctors in the lattice: an MCD has been inserted every other dipole to correct *b*₅.
 - Updated insertions: larger intra-beam separation in the insertions, larger dispersion in the δ collimation section, new extraction section.
 - Machine is now tuned with phase advances in the FODO cells of the long arcs.
 - No missing dipole in the long arcs.
 - Optical functions reduced in the DIS.
- Physical aperture is now within the specifications at injection.
- Magnet list has been updated.
- Alternative optics exists.