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Introduction

« Heavy-ion collisions in FCC-hh have been considered
since the inception of the project.

 Luminosity projections have risen over the years in
line with the improved Pb-beams now being collided in
the LHC.

* In close collaboration with the heavy-ion physics working
group the interest in Pb-Pb, p-Pb or lighter nuclei

collisions was evaluated. Summary of heavy-ion physics cases:
D. d’Enterria, Friday 11:15

« Summarized in detail in the CDR
* Volume 3, chapter 12 (FCC-hh machine design)
* Volume 1, chapter 29 (FCC-hh physics opportunities)
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Main Differences to Proton Operation

- Natural beam cooling - fast synch. radiation damping
«  Pb damps ~2x faster than protons: 7,4 (Pb)~ 0.5 h

«  Damping can be fully exploited since far from beam-beam limits
initially.

- Strong IBS once emittance has damped.
«  Limits emittance damping.

- Large cross-sections for ultra-peripheral electromagnetic
interactions.

- Powerful secondary beams emerging from the collision point
«  Fast luminosity burn-off

- More complicated interactions with collimators




General Parameters

LHC HL-LHC
achieved | baseline

Circumference 26.66 km
Beam Energy [Z TeV] 6.5 7
B-function at the IP [m] 0.6 0.5
No. Pb lons per bunch [1e8] 2.2 1.8
Transv. normalised ~1.5 1.65
emittance [um.rad]

Bunch spacing [ns] 100 50
Number of bunches 518 1256
Stored energy/beam [MJ] 10 21
Stored energy/beam at 0.7 1.5

Injection [MJ]
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Choice of Species

Baseline species Pb
with collision modes: Pb-Pb and p-Pb

Lighter ions are interesting, because of
* Physics output

» Lower cross-section for ultra-peripheral
el. mag. processes:
= Ogrpp ~ Z7, Ogwp ~ 24
- Reduced power in secondary beams
emerging the IP

» Potential for significantly higher nucleon-
nucleon luminosity
- Slower burn-off and longer fills, more
ions left for usable luminosity
- Expect higher bunch charge in the
injector chain

Considered species

40Ar18+ | 4UCa20+ | 78Kr66+ | 129Xe54+ | 208Pb82+

N
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Chosen from LHC injector
experience & to cover a wide
range of possibilities.

Opftimal species choices for
physics is a compromise
between available luminosity
and size of the QGP effects
to be studied




Assumptions for Lighter lons

Postulate simple form for bunch intensity
dependence on species charge only:

Ny(Z, A) = Ny (82, 208) (8_22> -

1.9, fixed target experience

where p =
P {0.75, LHC: Xe run vs. best Pb

Assume that other quantities, like geometric beam
size, filling scheme, other loss rates, etc, are equal.

Highly simplified
scaling to project
luminosity
performance as a
function of p.

p=1.5 seems
reasonable.

Same scaling used for LHC and HL-LHC predictions of lighter ions.




Nucleon-Nucleon Luminosity Evolution

) Nucleus-Nucleus
2
/:NN =A EAA Luminosity (AA)
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Nucleon-nucleon
luminosity (NN) — //

Mass number

Inst. Nucleon—Nucleon Luminosity Assumptions:
| | | | « Ultimate Pb parameters
* Intensity scaling with p=1.5

= 60 for lighter species.
SR « 2 experiments

5 0

= Spectacular boost
E 20ﬁ_ w.r.t. Pb-Pb!

Q

Increased luminosity lifetime,
more particles available for
10" hadronic interactions.
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Nucleon-Nucleon Integrated Luminosity

Average Luminosity/Experiment in 30 Days

Ar — | Assumptions:
100\ —c -« Ultimate Pb parameters
g0 Ca — Xe129 « Intensity scaling with

== Pb208

p=1.5 for lighter species.
e 2 experiments
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Table includes a
performance efficiency

factor of 50%
Tsotope A0p 18T [ 400520+ | K36+ | 12904t | 208ph82+
Number of particles [10°] 19.4 16.6 6.9 3.7 2.0
Integrated Laa [nb~!/run] 28381 25074 3286 560 62
Integrated Lnn [fb~/run] 45.4 40.1 20.0 9.3 2.7




p-Pb Integrated Luminosity per Run

p—Pb Int. Luminosity/Experiment in 30 Days

80F |
\ = Baseline: f*= 1.1m, #b = 2760 Assumptlon:
— "= 0.3m, Hb = 2760 . ) : i
60 — Ultimate: 8= 03m. b = b400 | same Pb-beam as in Pb-Pb

e p-beam with the same
number of charges and
geometrical emittance as
Pb-beam.

Solid: 1 exp. colliding
Dashed: 2 exp. colliding

(Lingy/run [pb™']
3

Potential to increase p intensity
0.0 (I)LS 10 15 50 205 30 as already done at LHC in 2016.

current LHC ™™ min. in 2016
injectors estimate

Including a performance | 533_91””93 UItimite:
efficiency factor of 50% 1 exp. Liy/run:  8pb 29pb
2 exp. Lj/run: 6pb-? 18pb-1
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v-y and y-A processes in nucleus-nucleus collisions

Ultra-peripheral electromagnetic interactions dominate the total cross-
section in heavy nucleus-nucleus collisions.

Bound-Free
Pair Production AXZ + AXZ — AXZ + AXZ—l + et
(BFPP)

Electro-magnetic
Dissociation AXZ + AXZ — AXZ —+ A_1XZ +n
(EMD)

Change of charge-to-mass ratio
Each of these makes a secondary beam emerging from the IP,

rigidity change:
1+AQ/Q




Secondary Beam Power

P=o,LE

BFPP Peak Power (Pb-Pb)
P=70 kW (1 exp.)
56 kW (2 exp.)

Power carried by secondary beams:

60- Power of EMD Beams 60 Power of BFPP Beam
[ - Ar40 — Ar40
50 -
; EMD| ——ge % BFPP =
! == Xel29 - Xe
E 40r — Pb208 E 40 N
5 30, 5 Ultimate beam
5 E parameter for
A 20, 2 experiments
10, in collisions
% 2 2 6 8 10 0 2 4 6 g 10
time [h] time [h]
Isotope 40Ar18+ 4()Ca20+ 78Kr3b+ 129Xe54—|— 208Pb82+
oonppp o 27 Reduction of OBFPPor [D] | ~0.02 | 0.042 ~1 ~185 344
) cross_section OEMD,tot [b] 2.2 2.7 16.6 67.9 284.2
oepnp < 24 Thadronic [b] | 2764 | 2767 | 4.29 5.89 7.9
: for lower Z. Ttot, [b] 5 5.5 22 92.3 636

Cross-sections calculated by Igor A. Pshenichnov et al. with RELDIS

/\ Power carried by EMD beams higher than BFPP already for Xe-Xe.
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Secondary Beam Trajectories (Pb-Pb)

High Power, continuous and very localised losses
Special collimators are required to absorb those beams and
enable the FCC to run with heavy ions.
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Dispersion Suppressor
Collimator (TCLDs)
positions for p-p can also
absorb secondary beams
from Pb-Pb collisions.

To be studied, if these collimators can absorb the deposited power
and how showers develop into the cold area.
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Collimation Cleaning Efficiency

Collimation cleaning efficiency has been studied for Pb-ions
within nominal collimation system setup.

Discussed in detail by A. Abramov in the following talk.
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Summary

FCC-hh could be a very high
performance heavy-ion collider.

Keep close to p-p operation

Luminosity performance:

- Upgraded several times since
the inception of the study

- In line with beams currently
collided in LHC.

Lighter ions

- operationally less challenging

- potential for higher performance
compared to baseline Pb.

Detailed chapter included in CDR.

Ensure Feasibility

Fuller integration into FCC study
- more people needed

Assumed existing LHC injectors -
could envisage upgrades.

Enhanced collimation studies:

- Cleaning

- Secondary beams (BFPP)

- Luminosity debris in asymmetric
collisions (p-Pb)

Clarification of experimental
conditions:

- no. of experiments

- preferred ion species

- dedicated time

CERN
\w 25/6/2019 M. Schaumann, Heavy-lons at FCC-hh, FCC Week 2019, Brussels, Belgium
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Thank you!




Parameter and Performance Table

Table 3: Parameter projections for alternative nuclei. Luminosity labelled with AA are nucleus-nucleus and NN
are nucleon-nucleon values. All calculations assume the ultimate parameter scenario and two experiments in

collisions.
Tsotope A0 I8+ [ 40(Ca20+ | BK 36+ | 129X e54+ | 208pp32+
Number of particles [10%] 19.4 16.6 6.9 3.7 2.0
OBFPP tot  [b] ~0.02 0.042 ~1 ~18.5 344
OEMD,tot * [b] 2.2 2.7 16.6 67.9 284.2
Ohadronic ¢ [D] 2.764 2.767 4.29 5.89 7.9
oot @ [b] 5 5.5 22 92.3 636
Power carried by BFPP beams [kW] 0.1 0.3 2.0 11.0 56.0
Power carried by EMD beams [kW] 14.6 20.2 33.9 40.6 46.3
Optimum time in collisions [h] 4.5 3.75 3.0 2.25 1.25
Initial Lo [103%cm—2s7!] 26.8 21.7 3.4 0.92 0.25
Initial £xN [10%%cm—2s71] 42855 34713 20893 15353 10729
Peak Laa [103%cm—2571] 46.0 46.8 7.1 1.4 0.25
Peak Lnn [103%cm™2s71] 73552 74805 43130 23017 10729
Integrated £aa [nb~!/run] 28381 25074 3286 560 62
Integrated £Lnn [fb~1/run] 45.4 40.1 20.0 9.3 2.7
Rate of hadronic interactions [MHz] 127.1 129.4 30.4 8.1 2.0
Events per bunch crossing 7.7 7.8 1.8 0.5 0.1

% Taken from Ref. [12]
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Similar strategy as for LHC:
* 1-month-long Heavy-lon runs
before each Technical Stop or

Shutdown

» 3 suchion runs per FCC-Run of

S years
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Filling Pattern (Baseline)

Trains of 5x4 Bunches = 20 Bunches/Train, spaced by 100ns
(limited by LHC extr. kicker flat top length)

FCC Filling Pattern — 1st injection LHC

" 37 injections, 36 nominal trains

1st LHC transfer: 1 Pilot + 36 Trains

I 0 5000 10000 15000 20000 25000 30000 35000

et number
FCC Filling Pattern — 2nd injection LHC

" 34 injections, 34 nominal trains

2nd 3rd 4th | HC transfer: 34 Trains

~ 690 bunches per LHC cycle = 2760 colliding bunches

FCC Filling Pattern
4 LHC fillings, 138 trains, 20 bunches/train

T

0 20000 40000 60 000 80000 100 000 120 000

Bucket number




Injection at 1.2 Z TeV

Ramping of the superconducting magnets becomes a
significant fraction of the SPS cycle length
~2x 12sec ramp vs. 12-24sec filling

Filling FCC with 2x138 trains into FCC takes ~1.5h-2h
For heavy-ions one SPS cycle produces 2 train with 20 bunches

Debunching losses from IBS are enhanced at lower energy.

> Reduction of total intensity

- Generally more losses and a longer dwell time
- Detailed studies needed.




Pb-Pb Luminosity Evolution

Scenarios:
 Baseline and Ultimate
‘Instantaneou‘s Luminosity‘ . 1 (SOIld) and 2 (dashed)
300 e | . : .. : .
250 e experiments in collisions in main
? == Ultimate: 5*= 0.3m, Hb = 5400 IPS
clwh 200t
ﬁ 150! Solid: 1 exp. colliding . .
S Dashed: 2 exp. colliding The available total integrated
< 10 luminosity is shared.
50t
0 1 2 3 4 Case of a special heavy-ion experiment

installed in secondary IP:

- larger %, less colliding bunches

= Luminosity would be reduced

- We do NOT consider this scenario at

present.




Pb-Pb Integrated Luminosity per Run

Pb—Pb Int. Luminosity/Experiment in 30 Days Considers:
0 3 I
300\ <i1 0-15% _ Baseline: f*= 1.Im, b = D760 | !:a_rtlc_le losses on FCC
AN gavmmede [ injection plateau of already
200 Solid: 1 exp. colliding ] C|rCU|at|ng tra|nS.
Dashed: 2 exp. collidirjg ° Optimum turn around

 Optimum time in collision
for each scenario

(Li/run [nb™]
2 8 8 ¢
[

)
)

00 | b5 1o 15 20 25 30 Neglects:

2x faster fia Luic [h]  Down time due to failures
injectors  Current LHC min. in 2016

injectors estimate

Including a performance 1 exp. L Jrun: gsiﬁl_ipe: 1U:%r:§t?
efficiency factor of 50% + int! THEL
CIEneY ’ 2 exp. Lj/run: 23nb-! 65nb-1
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p-Pb Luminosity Evolution

Instantaneous Luminosity

== Baseline: f*= 1.1m, #b = 2760
= *=0.3m, #b = 2760
== Ultimate: §*= 0.3m, H#b = 5400

Solid: 1 exp. colliding
Dashed: 2 exp. colliding

Same color code as for Pb-Pb

Assumed:

 same Pb-beam as in Pb-Pb

* p-beam with the same number
of charges and geometrical
emittance as Pb-beam.

Longer luminosity lifetime,
because for 82-Pb charges only
1-p is burned-off.

Potential to increase p intensity
as already done at LHC in 2016.




