

Alternative Optics

Leon van Riesen-Haupt, Jose Abelleira, Emilia Cruz Alaniz, Andrei Seryi

Introduction

- FCC-hh
 - Unprecedented high energy 100 TeV CoM
 - High luminosity requirement $30 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ peak luminosity
- Experimental Interaction Regions
 - Two straight sections in tunnel
 - Match arc optics to low β^* in IP
- Final Focus Triplet
 - Exposed to large amounts of collision debris
 - Large aperture to accommodate both beams with large β
 - Novel Nb₃Sn technology
- Baseline Design
 - Based on scaling LHC Triplet
 - Presented by R Martin
- Find Alternative Triplet using Method Independent from Baseline

 \mathcal{A}

- Achieve a β^* of 0.3 m
 - Ideally also slightly lower
- Matched with 15.5 σ crossing angle
- Sufficient shielding
 - Protect over one lifetime of ~ 30 ab⁻¹
 - Dose limit ~ 30-100 MGy
- Allow for 15.5 σ beam stay clear in triplet
 - Both beams in one aperture, separated by 15.5 σ
- Achieve this with the shortest possible triplet

- Can be solved analytically
 - Represent quadrupoles as thin lenses at centre
 - Enforce focusing condition
- Used as a first approximation
- Sample large design parameter space
- Initial condition for finite length matching

Thin Lens Figure of Merit

- Track 1 σ particle through all lenses in x and y plane
- Estimate required
 aperture
 - Assumes quadrupole gradient $\sim \frac{B_{max}}{r}$

$$- r \approx \frac{B_{max}L_Q}{g \times B\rho}$$

Estimate BSC

 $\frac{r}{max(x,y)}$

Compute thin lens FOM

London

Optimisation Process

AI

Royal Holloway University of London

- Exponential fit
 - Based on actual estimates
 - More accurate than gradient $\sim \frac{B_{max}}{r}$ estimate
- In aperture calculation also account for
 - Cold bore (5.4% of radius)
 - Cooling channel (1.5 mm)
 - Kapton insulation (0.5 mm)
 - Beam Screen (2.05 mm)
 - BS insulation (2 mm)

OXFORD

Energy Deposition Studies

- Jose Abelleira (Oxford)
- FLUKA model
- Parameterised to be altered easily
- Test final triplet designed after optics optimisation

Work Together

AI

Results for 45 m L*

Parameter		Quadrupole	
	Q1	Q2	Q3
Sub-magnets	2	3	2
Sub-magnet Length (m)	15	15	15
Coil Radius (mm)	98.3	98.3	98.3
Gradient (Tm ⁻¹)	106	110	97
Shielding (mm)	44.2	33.2	24.2

Triplet made of 7 identical magnets

- Uniform aperture benefits deposition
- Easier to design
- Smaller pool of backups

London

Shielding in magnets
 increases towards IP

AI

C Royal Holloway UNIVERSITY OF UNIVERSITY OF OXFORD

Eur CirCol A key to New Physics

Results for 45 m L*

Parameter		Quadrupole	
	Q1	Q2	Q3
Sub-magnets	2	3	2
Sub-magnet Length (m)	15	15	15
Coil Radius (mm)	98.3	98.3	98.3
Gradient (Tm ⁻¹)	106	110	97
Shielding (mm)	44.2	33.2	24.2

7AI

Move towards 40 m L*

Parameter		Quadrupole	
	Q1	Q2	Q3
Sub-magnets	2	3	2
Sub-magnet Length (m)	15	15	15
Coil Radius (mm)	96.5	96.5	96.5
Gradient (Tm ⁻¹)	106	112	99
Shielding (mm)	44.2	33.2	24.2

- Moved triplet 5 m closer to IP
 - Due to change in experimental hall layout
- Re-matched triplet
 - Slightly increased strength
 - Slightly smaller β
- Reduced Chromaticity

Ai

Move towards 40 m L*

Parameter	Q1	Quadrupole Q2	Q3
Sub-magnets	2	3	2
Sub-magnet Length (m)	15	15	15
Coil Radius (mm)	96.5	96.5	96.5
Gradient (Tm ⁻¹)	106	112	99
Shielding (mm)	44.2	33.2	24.2

London

Royal Holloway University of London 7Δi

- Largest deposition in Q3
- Can be reduced by switching crossing planes
 - $< 15 \text{ MGy} / 10 \text{ ab}^{-1}$
- For 30 ab⁻¹ lifetime
 - < 45 MGy
- At lower end of 30 MGy 100 MGy limit
- Comparable to baseline

Jose Abelleira

- Motivation
 - Compensation if crab cavities aren't available
 - Large β^* in crossing plane
 - Allows smaller crossing angle
- Study to find best flat optics choice performed by Jose Abelleira
- $1.2 \times 0.15 \text{ m optics}$
- Achieved with same triplet and matched with matching section

Flat Optics Results

Ai

- Several Similarities
 - Alternative Triplet 2.5% shorter magnetic length (R. Martin)
 - Radiation dose comparable to "High Shielding" baseline optics (B. Humann)
 - Same 0.2 m β^* reach in this case
 - Both options satisfy DA requirements (E. Cruz-Alaniz)
- Largely confirms baseline approach
- Differences
 - All sub-magnets identical
 - One design, less backup
 - Unequal β functions
 - Varying shielding

- Design of Alternative Triplet
 - Triplet optimisation code
 - Optics and energy deposition studies
- Full Optics Set
 - Injection
 - Collision (various β^*)
 - Flat-optics
- Comparable to Baseline Triplet
- Made of 7 Identical Magnets