

FCC-hh injector design

On behalf of W. Bartmann, B. Goddard

Overview

- Requirements and constraints
- HEB options
 - Reuse of LHC for 3.3 TeV HEB
 - Alternative 3.3 TeV options
 - 1.3 TeV s.c. SPS alternative
 - Performance comparison summary
- How to proceed
- Summary and outlook

High Energy Booster (HEB) requirements

- Inject at 3.3 TeV,
 - 1.3 TeV has been studied as low-energy option, but presently excluded by FCC-hh collider.
- Deliver required beam parameters:
 - Intensity, emittance, spacing.
- Fill FCC-hh as quickly as possible,
 - Target 30 minutes (LHC experience shows that this is reasonable).

Constraints and options considered

- Re-use existing CERN proton complex as far as possible:
 - Assume post HL-LHC performance,
 - Keep the main project effort focused on the 100 km collider(s).
- Options studied based on existing tunnels:

• SPS: 6.9 km

LHC: 26.7 km

• FCC: 100 km

Injector chain in context

- Regular progression in energy gain per step (~x15) in existing accelerator complex.
- New HEB only modest energy gain (~x7).
- If s.c. SPS is used, energy gains would become large for HEB and FCC.

Baseline: reuse of LHC as 3.3 TeV HEB

Reuse of LHC: general layout changes

Reuse of LHC as 3.3 TeV HEB

LHC Straight sections:

- IR1: new extraction system and beam crossing, plus **decommissioning** af ATLAS
- IR2: injection to inside ring plus decommissioning of ALICE and crossing
- IR3: **no changes** to momentum collimation
- IR4: **no changes** to RF system
- IR5: decommissioning of CMS, plus beam crossing
- IR6: **no changes** to beam dump
- IR7: no changes to betatron collimation
 IR8: injection to inside ring plus new extraction = plus decommissioning of LHCb and crossing
- Transfer from LHC P1 and P8 (11.7 km with 7 T dipoles)

3.3 TeV LHC performance: faster ramping

- Present LHC ramp up to 3.3 TeV would take 8'30", total FCC filling time >1.5 hours.
- With dipole/quadrupole power converter upgrades and a ramp at 50 A/s, 3.3 TeV ramp takes 156 sec.
- PPLP scheme instead of PELP essential to fully profit from increased ramp rate (tested in 2017, used in LHC in 2018).
- Time to ramp down from 3.3 TeV driven by one-quadrant main quadrupole power converters. With upgrade, ramp down time shortened to 100 s.
- Overall FCC filling time (on paper) is then 46 minutes, for 4 LHC fills and ramps.

Time (s)

Alternative 3.3 TeV HEB options

100 km superferric HEB

3.3 TeV superferric 100 km HEB in FCC-hh tunnel

Features

- 1.1 T dipoles (for 70% filling factor)
- Single aperture + polarity reversal, or simple twin aperture →
- Impedance and stability at injection energy → could require magnet vertical gap ~80 mm
- Needs to be superferric: 50 kA SC cable (100 MW peak power if resistive)
- Ramp-up time 120 s (limited by RF)
- FCC filling in 32 minutes (injectors)

Critical points

- By-pass tunnels around 4 experiments ∫15 km (FCC-ee)
- Very high stored energy of 670 MJ
- Issue of beam loss du to cross-talk between HEB and FCC-hh? (collimation, slow extraction)
- Integration into FCC tunnel still to demonstrate

Vertical full gap [mm]	2 × 50		
Good field region on midplane [mm]	±20		
Pole width [mm]	100		
Inter-beam distance [mm]	300		
Outer diameter of cable cryostat [mm]	100		
Overall dimensions [mm]	320×600		
Iron weight per unit length [t/m]	1.2		
Injection energy [TeV]	0.450		
Injection field [T]	0.14		
Current at injection energy [kA]	6.5		
Extraction energy [TeV]	3.4		
Extraction field [T]	1.1		
Current at extraction energy [kA]	50		

27 km, 4 T, s.c. LHC replacement

- 3.3 TeV superconducting 26.7 km HEB in LHC tunnel
 - Dedicated HEB: more suitable than re-purposed LHC.
 - More robust, less complex magnets will be used:
 - 4 T dipoles (4 K cos θ RHIC, Tevatron, FAIR SIS200/300)
 - Single aperture needs polarity reversal, to avoid very long transfer lines, otherwise twin aperture (cost/complexity...)
 - Simplified LHC lattice, with insertions as per reused-LHC
 - Ramp-up time about 50 s (limited by RF system)
 - FCC filling time about 39 minutes (injectors)

Tevatron

| Control | Cont

1.3 TeV scSPS alternative

1.3 TeV s.c. SPS as HEB

- Transfer from SPS P3 and P5 (10 km @ 1.8 T)
- s.c. SPS Straight sections:
 - LSS1: injection system
 - LSS2: slow extraction system to North Area
 - LSS3: fast extraction to FCC
 - LSS4: RF system
 - LSS5: fast extraction to FCC
 - LSS6: beam dump and collimation systems

Florian Burkart et al.

1.3 TeV scSPS optics

Linear optics design based on present SPS concept

• 64 m cell length, missing magnet Dispersion Surpressor, 12 m, 6 T dipoles

Parameter	Unit	Value	
Injection energy	GeV	26	
Extraction energy	GeV	GeV 1300	
Maximum dipole field	T	6	
Dipole field at injection	T 0.12		
Dipole magnet length	m	12.12	
Cold bore inner diameter	mm	80	
Number of dipoles		372	
Number of quadrupoles		216	
Ramp rate	T/s	0.35 - 0.5	
Cycle length	min	1	
Number of bunches per cycle		64 66	
Number of injections into scSPS	-102	58 (80be)	
Number of protons per bunches	bles	$\leq 2.5 \times 10^{11}$	
Number of extraction per cycle	On	$\frac{1}{2}$ (2x320 b)	
Number of cycles per FCC filling		34	
FCC filling time	min	34 - 40	
Max stored beam energy	MJ	33	

1.3 TeV s.c. SPS performance

- Dipole ramp rate ~0.5 T/s, 12 s ramp

 - Aperture dimensioned for slow extracted fixed-targetybeans 6 T Model
 x 50 energy swing to validate

 Parameter

 Unit Value

 Parameter

 Param

Parameter	Unit	Value	sentation Thursof a Fast Sesign Status of a Fast Nesign 1.9 K'ng at 1.9 K'
Max. beta $\beta_{x,z}$	m	107	sentatus or
Max. dispersion D_x	m	e P4.3	sign sk,
Orbit + alignment tolerance	asemm	(O, 2.5))e3 1 1 9 1 1
Injection oscillation	Valley	COOLEN	
Emittance $E_{x,y}$ (1 σ , norm)	sole	2.2E-6	
δρ/ρ	Ib.	5E-4	
A_x / A_y	mm	76 / 69	
Coldbore inner diameter	mm	80	12 sec 5 sec 12 sec 12 sec 5 sec 12 sec
			scSPS cycle length: 1 min

Overall performance comparison

Parameter	Unit	6 T scSPS	reuse LHC	new 4 T LHC	1 T 100 km
Circumference	km	6.9	26.7	26.7	100
Apertures		1	2	1	2
Injection energy	GeV	26	450	450	450
Extraction energy	TeV	1.3	3.3	3.3	3.3
Injection field	T	0.12	0.6	0.6	0.14
Maximum field	T	6	4	4	1.1
Energy/field swing factor		50	7	7	7
Individual dipole length	m	12	14.3	14.3	8
Overall dipole filling factor		0.65	0.66	0.66	0.63
Number of dipoles		372	1232	1232	7856
Number of quads		216	480	480	1250
Total HEB bunches		640	2600	2'600	11'000
Stored HEB energy per beam	MJ	15	167	167	670
HEB filling time	min	0.5	7.5	3.8	30.1
HEB ramp rate	T/s	0.4	0.026	0.08^{*}	0.011^{*}
Total HEB cycle length	minutes	1.1	12	4.9	32
HEB cycles per FCC fill		34	4	8	2
FCC filling time (25 ns)	minutes	37	46	39	32

How to proceed

- A consensus needs to be found how to proceed over the next ~5 years, aiming for a HEB TDR.
 - Assume s.c. SPS and 100 km variant not further pursued.
 - Study in further details repurposing LHC or 4T 27 km HEB.
- Topics to be worked out:
 - Decision point: which variant to be retained (LHC vs. 4T HEB).
 - Power converters, quench protection, magnet design and other all hardware.
 - Beam transfer, transfer lines and civil engineering.
- Resource needs over 5 year period:
 - 1 fte Fellow with electrical engineering background,
 - 1-2 fte Fellows with physics background.

Summary and outlook

- Reuse of existing LHC with 5x faster ramp remains FCC-hh baseline.
 - Can deliver 3.3 TeV beam, albeit with longer filling time than desired.
 - To take into consideration:
 - high operating cost and complexity,
 - availability concerns.
- 4 T, 27 km, purposed built single aperture HEB alternative would have advantages:
 - Less complex machine.
 - Slightly faster filling time (39 minutes).
- To reach decision point on how to proceed → Costing is needed for real comparison of both options.
- scSPS option only valid if 1.3 TeV FCC injection is possible:
 - Presently excluded by FCC –hh collider because of dynamic aperture and the large energy swing may be an issue.
 - Still of interest for HE-LHC.

Bibliography

- 1) FCC-hh injectors: scenarios, B. Goddard, FCC week 2018
- 2) Faster ramping of LHC in 2017 and prospects for lower energy injection into LHC in 2018, A. Milanese, FCC week 2018
- 3) The superconducting Super Proton Synchrotron, ed. L. Dyks et al, FCC note being published
- 4) High Energy Booster options for a Future Circular Collider at CERN, L.Stoel et al., <u>IPAC2016-</u>MOPOY007
- 5) Possible reuse of the LHC as a 3.3 TeV High Energy Booster for hadron injection into the FCC-hh, B.Goddard et al., IPAC2015-THPF094
- *Beam transfer to the FCC-hh collider from a 3.3 TeV Booster in the LHC tunnel*, W.Bartmann et al., IPAC2015-THPF089
- 7) Faster ramp of LHC for use as an FCC High Energy hadron Booster, A.Milanese et al., <u>CERN-ACC-2015-0133</u>
- 8) Main changes to LHC layout for reuse as FCC-hh High Energy Booster, B.Goddard et al., CERN-ACC-2015-0030
- 9) Physics opportunities with the FCC-hh Injectors, B.Goddard et al., arXiv:1706.07667-2017
- Concept of a hybrid (normal and superconducting) bending magnet based on iron magnetization for 80-100 km lepton/hadron colliders, A.Milanese, IPAC2014-TUOCB01

Back up slides

Layouts of modified LHC straight sections: IR1

 Low beta insertion removed from Q6; new extraction channel combined with a new superconducting crossing

Layouts of modified LHC straight sections: IR2

 Low beta insertion and crossing replaced from Q5 inwards by FODO; injection moved to inner ring and downstream

Layouts of modified LHC straight sections: IR5

 Low beta insertion replaced from Q4 inwards by FODO; crossing with superconducting dipoles; possibility for (collider) experiment

Layouts of modified LHC straight sections: IR8

 Remove low beta insertion from Q5 inwards; move injection to inner ring; extract beam from outer ring

HEB options at CERN: energy field

HEB options at CERN: SPS tunnel

HEB options at CERN: LHC tunnel

HEB options: FCC collider tunnel

A ramp in the LHC involves 1700+ electrical circuits: the 8 main dipoles (MB) limiting ones – in terms of ramp rate – are the lar 16 main quad. (MQ)

(correspond to ultimate, 7+ TeV)

data from electrical layout database

