Beam-Beam Effects for 4 IP

Dmitry Shatilov

BINP, Novosibirsk

Acknowledgements: K. Ohmi, K. Oide

FCC Week, Brussels 26 June 2019

Introduction

- Studies on 4 IP started recently and are in progress. The self-consistent list of parameter is not yet ready.
- In this presentation, we discuss the limitations that arise due to the beam-beam effects, propose parameter optimization and estimate achievable luminosity.
- The layout is assumed to be symmetrical, so that 2×2 bunches collide, and a quarter of the ring is a superperiod. This means that between each pair of neighboring IPs there is a straight section where the RF cavities and additional intersection without collision are located.
- Symmetrical scheme with 3 IP implies that 3×3 bunches are coupled, which can cause problems. Almost symmetrical scheme with 3 IP and 2×2 coupled bunches is possible: same as 4 IP, but one IP is missed (no collision, no detector). We will not discuss 3 IP here.

4 IP vs. 2 IP

 Changes in the lattice because of different layout: emittances, momentum compaction, DA, momentum acceptance, etc.

Not yet taken into account, but these changes should be small – see the previous presentation by K. Oide. The goal now is to compare 4 IP and 2 IP, assuming the basic lattice parameters are the same.

 Do additional coherent instability modes appear in the collisions of 2×2 bunches?

No additional modes were observed by two independent tracking codes. But these studies are not yet complete.

 Decrease in the synchrotron tune *per superperiod*. This is important for the coherent beam-beam instability and 3D flip-flop.

This affects the choice of working point (betatron tunes). Besides, a decrease in β_x^* is required at low energy.

- Increase in the energy spread and bunch length due to intensified beamstrahlung. The negative consequences:
 - 1) With the same bunch population, luminosity per IP drops as $L \propto 1/\sigma_z$.
 - 2) Luminosity at high energies is limited by momentum acceptance. A decrease in the bunch population can be required to maintain acceptable lifetime, that also reduces the luminosity.

Parameter Optimization Issues

Old results for 2 IP at Z pole.

Luminosity vs. betatron tunes, simplified model, weak-strong simulations. Colors from zero (blue) to $2.3 \cdot 10^{36}$ cm⁻²c⁻¹ (red).

All tunes – per superperiod!

- The main problems (esp. at low energies) come from the coherent beam-beam instability and 3D flip-flop.
 Both effects are associated with the synchro-betatron resonances: 2v_x + 2kv_z = n.
- Important parameter, which needs to be minimized: ξ_x / v_z . Increase in RF voltage does not help!
- The major steps for mitigation of both instabilities:
 - 1) Increase in the momentum compaction factor: $v_z\uparrow$, $\sigma_z\uparrow$ => $\xi_x\downarrow$
 - 2) Decrease in $\beta_x^* \Rightarrow \xi_x \downarrow$
 - 3) Some increase in v_x to increase the orders of synchro-betatron resonances. But we are limited here, if we want to achieve large ξ_y
 - 4) Decrease in RF voltage (and v_z), which does not affect the ξ_x / v_z ratio but decreases the order of synchro-betatron resonances.
- With 2 IP, luminosity is limited by ξ_y + asymmetry in the bunch population + large enough v_x .
- With 4 IP, v_z is halved while ξ_x is *slightly* decreased. Thus we have ξ_x / v_z increased and the old problems came back...

Coherent Instability at 45.6 GeV

- The orders of resonances doubled, the distance between them halved, and the height of peaks decreased.
- The width of the stable areas between the peaks is important, and NOT the height of the peaks.
- In the case of 4 IP, the width of stable areas is too small. We need additional optimization of parameters.

	$\sigma_{\!\delta}({ m SR})$	$\sigma_{\!\delta}({ m SR+BS})$	$\sigma_{\!z}({ m SR})$	σ_{z} (SR+BS)	N _p	ξχ	L / IP	
2 IP	3.8E-4	1.32E-3	3.5 mm	12.1 mm	1.7E+11	0.0038	2.3E+36	-13%
4 IP	3.8E-4	1.48E-3	3.5 mm	13.7 mm	1.7E+11	0.0030	2.0E+36	,

β_x^* reduced from 15 to 10 cm [45.6 GeV]

80 GeV

120 GeV

182.5 GeV

- Piwinski angle is not large (~1) and damping is very strong, so there are no problems with coherent instabilities. Small V_z per superperiod is not an issue anymore.
- As compared with 2 IP, σ_{δ} increases because of intensified beamstrahlung => σ_z increases as well => the charge density decreases => the critical energy of BS photons U_c decreases.
- For the BS lifetime two things are important: σ_{δ} and U_c . It so happened that the increase in σ_{δ} is compensated by a decrease in U_c , and we got the same lifetime. There is no need to decrease N_p.

	$\sigma_{\!\delta}({ m SR})$	$\sigma_{\!\delta}({ m SR+BS})$	$\sigma_{\!z}^{}({ m SR})$	σ_{z} (SR+BS)	Np	ξ _x	L / IP	
2 IP	1.5E-3	1.92E-3	1.97 mm	2.54 mm	2.3E+11	0.099	1.55E+34	-10%
4 IP	1.5E-3	2.17E-3	1.97 mm	2.89 mm	2.3E+11	0.086	1.40E+34	,

Summary

- In the case of 4 IP instead of 2, luminosity per IP decreases by 10÷20 % (in assumption that the basic lattice parameters are the same).
- The main limiting factors are beamstrahlung (increase in the energy spread) and reduced synchrotron tune per superperiod (coherent instability at low energy).
- The proposed parameter optimization:
 - Z) Change in ν_x , decrease in β_x^* .
 - W) Change in v_x .
 - H) Change in V_{x} , decrease in N_{p} .
 - tt) No changes are required.