

Contents

- Motivation for availability studies
- Studies for FCC-hh
- FCC-ee use scenario
- Critical topics on availability
- Conclusions

Sustainable operations

- Purpose of the FCC-ee is to study high energy physics
- Creating scientific findings depends on producing collisions
- Risk: Unavailability & inefficiencies can slow down the production
 - Immediate effect: Reaching scientific results require more time and is costlier
 - Worst case scenario: Failure to reach some physics program targets

Study objectives

- Existing e⁺e⁻-colliders have a good availability track record
- FCC-ee will be larger & operate with higher energy
- Goal to identify aspects where:
 - New technologies are used
 - System complexity scales up
 - Known technology in new environment
- Ability to affect project outcome decreases as project matures → Early identification important

Existing availability studies

- Early focus was on the modelling approach:
 - Requirements identification
 - Creating an early prototype
 - Current technology readiness level NASA rank 4-5
- Main areas of research were combined operations & availability modelling
- Work was done in a collaboration with Tampere Uni. & Ramentor Oy
- Dedicated poster with references ->

FCC-ee use scenario

$$L_{int} = T * E * L_{nom}$$

- E = Effectiveness, Design goal 75%
- Requires about 80% hardware availability

FCC-ee Complex

Initial naïve allocation:

- Pre-booster 98 99% availability
- Booster 90 91% availability
- Collider ring 90 91% availability

SPS experience

Pre-booster options & availability

SPS

Assumptions:

- No injector failures
- Remove failures that affect only fixed targets
- → Availability = ~96%

Linear accelerator

Example LCLS @ SLAC:

- Free electron laser with 17 GeV energy
- Over 96% hardware availability

On paper, both options can achieve high availability

Critical systems: Radio frequency

LEP experience¹

- LEP2: 288 sc-cavities +
 56 copper cavities
- In year 2000, average trip rate was 1 trip in 14 min,
- Redundancy is vital

Redundancy	Collision time
None	14 min
1 cavity	1.5 h
2 cavities	Not limited by trips

Powering

- Solid state amplifier instead of klystrons?
- Enables build-in redundancy
- Soleil has 11 years of experience with excellent availability²

Critical systems: Magnet utilities

Powering

- Modular power converters have been developed for multiple accelerators
- Enables build-in redundancy where failing module can be replaced in real time
- Diamond light source, years without PC beam trips¹ (Compare PS 188 in 2018)

Water cooling

- Cooling failure halts magnet operations
- Modes e.g. blockage, water leak in connection or hose
- In SLAC, MTBF for a water cooled magnet 0.6 – 3 million h⁽²⁾
- FCC-ee & booster will have ~10000 magnets → With current rate: leak every 0.5 - 2 weeks

Critical systems: Electricity distribution

- CERN complex experience:
 - Few long failures per year
 (1 several days)
 - Dozens of beam dumps per year due to lightning strikes
- FCC will have multiple grid connections → Risk that event frequency scales up
- DC-grid with buffers is a potential solution to power dips

Critical systems: Energy storage

- Booster ring will have cycle time of 5 – 50 s
- Potential strain for network (~60MW)
- Might necessitate use of an energy storage

- Multiple ways to implement:
 - CERN's PS has had flywheel & capacitor based storages
 - Studies on use of SMES as a reserve power source in DESY & J-PARC

Operational effectiveness

- Fill time for Z run about 18 min
 - 3 fills/day ~5% loss in efficiency
 - Note: Luminosity production starts during the fill
- After fill production level is maintained
 - Currently ~5% bunch asymmetry budget for filled machine

Bunch charge asymmetry

- SPS-LHC injections 20% are rejected, reasons:
 - Machine protection
 - Beam quality requirements
- Probably much less severe in FCC-ee
- LHC Injector complex experience: High number of short failures:
 - Under 1 min failures: not recorded systematically
 - 1-5 min: 430 occurrences in ~200 days
 - Over 5 min: 631 occurrences in ~200 days
- Short disruptions will occur also in FCC-ee
- Necessary to understanding the effects to the operations
 & luminosity production → Criticality of injector failures

Conclusions

- Lepton colliders have operated with high availability
- FCC-ee has several key systems where build-in redundancies can increase availability
- Recommendation: Identify & document potential risks & solutions for availability
 - Helps to focus research on solving issues

