Machine availability for FCC-ee

Arto Niemi, CERN
Contents

• Motivation for availability studies
• Studies for FCC-hh
• FCC-ee use scenario
• Critical topics on availability
• Conclusions
Sustainable operations

- Purpose of the FCC-ee is to study high energy physics
- Creating scientific findings depends on producing collisions
- **Risk:** Unavailability & inefficiencies can slow down the production
 - **Immediate effect:** Reaching scientific results require more time and is costlier
 - **Worst case scenario:** Failure to reach some physics program targets
Study objectives

- Existing e^+e^--colliders have a good availability track record
- FCC-ee will be larger & operate with higher energy
- Goal to identify aspects where:
 - New technologies are used
 - System complexity scales up
 - Known technology in new environment
- Ability to affect project outcome decreases as project matures → Early identification important
Existing availability studies

- Early focus was on the modelling approach:
 - Requirements identification
 - Creating an early prototype
 - Current technology readiness level NASA rank 4-5
- Main areas of research were combined operations & availability modelling
- Work was done in a collaboration with Tampere Uni. & Ramentor Oy
- Dedicated poster with references
FCC-ee use scenario

- $E = \text{Effectiveness, Design goal 75\%}$
- Requires about 80\% hardware availability

$L_{int} = T \times E \times L_{nom}$
FCC-ee Complex

Initial naïve allocation:
- Pre-booster 98 – 99% availability
- Booster 90 – 91% availability
- Collider ring 90 – 91% availability

Pre-booster = SPS or a new Linac
SPS experience

- Top contributors:
 - Injector chain
 - Power convertors
 - RF-system
 - Electrical network
- Some failures only affect fixed targets, not LHC (long PC fault, extraction & BI-system issues)

Only NA affected

~500 h
Pre-booster options & availability

SPS

Assumptions:
- No injector failures
- Remove failures that affect only fixed targets
→ Availability = ~96%

Linear accelerator

Example LCLS @ SLAC:
- Free electron laser with 17 GeV energy
- Over 96% hardware availability

On paper, both options can achieve high availability
Critical systems: Radio frequency

LEP experience¹

- LEP2: 288 sc-cavities + 56 copper cavities
- In year 2000, average trip rate was 1 trip in 14 min,
- Redundancy is vital

<table>
<thead>
<tr>
<th>Redundancy</th>
<th>Collision time</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>14 min</td>
</tr>
<tr>
<td>1 cavity</td>
<td>1.5 h</td>
</tr>
<tr>
<td>2 cavities</td>
<td>Not limited by trips</td>
</tr>
</tbody>
</table>

Powering

- Solid state amplifier instead of klystrons?
- Enables build-in redundancy
- Soleil has 11 years of experience with excellent availability²

¹ R. W. Aßmann in CERN-SL-2001-003
² P. Marchand in IPAC2017
Critical systems: Magnet utilities

Powering
- Modular power converters have been developed for multiple accelerators
- Enables build-in redundancy where failing module can be replaced in real time
- Diamond light source, years without PC beam trips\(^1\) (Compare PS 188 in 2018)

Water cooling
- Cooling failure **halts** magnet operations
- Modes e.g. blockage, water leak in connection or hose
- In SLAC, MTBF for a water cooled magnet 0.6 – 3 million h\(^2\)
- FCC-ee & booster will have \(~10000\) magnets → With current rate: leak every 0.5 - 2 weeks

\(^1\)V.C. Kempson in PAC 2017

\(^2\)C. M. Spencer & S. J. Rhee in PAC 2003
Critical systems: Electricity distribution

- CERN complex experience:
 - Few long failures per year (1 – several days)
 - Dozens of beam dumps per year due to lightning strikes
- FCC will have multiple grid connections → Risk that event frequency scales up
- DC-grid with buffers is a potential solution to power dips
Critical systems: Energy storage

- Booster ring will have cycle time of 5 – 50 s
- Potential strain for network (~60MW)
- Might necessitate use of an energy storage

- Multiple ways to implement:
 - CERN’s PS has had flywheel & capacitor based storages
 - Studies on use of SMES as a reserve power source in DESY & J-PARC

Based on ~10 years old image
Operational effectiveness

- Fill time for Z run about 18 min
 - 3 fills/day ~5% loss in efficiency
 - Note: Luminosity production starts during the fill
- After fill production level is maintained
 - Currently ~5% bunch asymmetry budget for filled machine
Bunch charge asymmetry

- SPS-LHC injections 20% are rejected, reasons:
 - Machine protection
 - Beam quality requirements
- Probably much less severe in FCC-ee
- LHC Injector complex experience: High number of short failures:
 - Under 1 min failures: not recorded systematically
 - 1-5 min: 430 occurrences in ~200 days
 - Over 5 min: 631 occurrences in ~200 days
- Short disruptions will occur also in FCC-ee

- Necessary to understanding the effects to the operations & luminosity production → Criticality of injector failures
Conclusions

• Lepton colliders have operated with high availability

• FCC-ee has several key systems where build-in redundancies can increase availability

• **Recommendation:** Identify & document potential risks & solutions for availability
 ➢ Helps to focus research on solving issues