

CLD detector performance with beam pipe with reduced diameter at IP - a first look -

Emilia Leogrande (CERN), on behalf of the CLICdp and FCC Collaborations

> FCC Week 2019 27/6/2019 - Brussels

FCC Week 2019, 24-28 Jun 2019 | Emilia Leogrande, emilia.leogrande@cern.ch

Introduction

- + CLD (CLIC-Like Detector) is a detector concept developed for FCC-ee
- Design for the CDR (Dec 2018) adapted from the CLICdet to the FCC-ee interaction region specifics (crossing angle, magnets, beam pipe, background conditions)
- Performance satisfying the physics requirements O. Viazlo's talk

- Novel design option post-CDR:
 - + beam pipe at IP radius reduced from 15 mm to 10 mm
 - ◆ CLD detector design adjusted to the new IR layout

Vertex detector - design update

- ★ 3 double barrel layers + 3 double layer disks per side
 - ✤ 0.6%X₀ per double layer
 - pixel size 25 x 25 μm²
 - ◆ sensitive thickness 50 µm per layer

+ first double barrel layer closer to beam pipe

- third barrel layer unchanged
- second barrel layer equidistant from first and third
- vertex disks unchanged

	CDR	post-CDR
beam pipe radius [mm]	15	10
r1 [mm]	17.5	12.5
r2 [mm]	18.5	13.5
r3 [mm]	37	35
r4 [mm]	38	36
r5 [mm]	57	57
r6 [mm]	58	58

Transverse impact parameter resolution

- + $\sigma(\Delta d_0)$ expected to improve with a vertex detector closer to the interaction point
- Results obtained in full detector simulation and reconstruction
- + Resolution calculated as width of the Gaussian fit to the residual distribution per data point

- improvement overall more visible for lower-energy muons
- + resolution for muons with momentum of 1 GeV also matches the design goal

Longitudinal impact parameter resolution

- $\sigma(\Delta z_0)$ expected to improve with a vertex detector closer to the interaction point
- Results obtained in full detector simulation and reconstruction
- + Resolution calculated as width of the Gaussian fit to the residual distribution per data point

improvement overall more significant for lower-energy muons

Flavour tagging algorithm

Output

Multivariate

Classifier

BDT

Variable

b, c and q-likeness

of each jet

- Full simulation and reconstruction with <u>LCFIPlus</u> implemented in the Marlin framework of iLCSoft
- + Algorithm chain:
 - vertex tinder
 - jet clustering
 - vertex refiner
 - multivariate analysis

vertices, then the track is taken as a pseudo-vertex.

dataset divided in 4 categories, used to train the BDT

23 variables

Input

Variables

CLD detector performance with smaller beam pipe at IP | E. Leogrande (CERN)

track whose trajectory passes near a point collinear to the primary and secondary

- Dijet events with Ecm = 91 GeV and θ = 20 deg
- Flavour tagging relies on the capability of primary and secondary vertices reconstruction =>expected to improve with a vertex detector closer to the interaction point Results obtained in full detector simulation and reconstruction dashed = CDR

FIAVOUR tagging for dijets at 91 GeV

Charm eff.

Preliminary observations

- Flavour tagging in dijet events at 365 GeV improves slightly with post-CDR model
- + Flavour tagging in dijet events at 91 GeV improves significantly with post-CDR model
 - ◆ @365 GeV, the polar angle dependence shows that the improvement:
 - is better in the forward direction for the b-tagging
 - is similar in the forward and central direction for the c-tagging
 - @91 GeV, the polar angle dependence shows that the improvement:
 - is better in the forward direction for the b-tagging
 - is better in the central direction for the c-tagging

Preliminary observations

- Flavour tagging in dijet events at 365 GeV improves slightly with post-CDR model
- + Flavour tagging in dijet events at 91 GeV improves significantly with post-CDR model
 - ◆ @365 GeV, the polar angle dependence shows that the improvement:
 - is better in the forward direction for the b-tagging
 - is similar in the forward and central direction for the c-tagging
 - @91 GeV, the polar angle dependence shows that the improvement:
 - is better in the forward direction for the b-tagging
 - is better in the central direction for the c-tagging

Food for thoughts

- b tagging
 - improvement stronger at 91GeV than at 365GeV <= fraction of b hadrons that decay after the innermost layer is smaller at 91GeV than at 365GeV
 - ◆ @91GeV && 90deg: ~10%, @365GeV && 90deg: ~50%
 - improvement stronger in the forward than in the central region at both energies <= fraction of b hadrons that decay after the innermost layer is smaller at 20deg than at 80deg
- tagging depends on many other variables: vertex mass, vertex resolution, impact parameter significance, ... <u>This is only the start of the investigation</u>

Incoherent pairs background

- distribution of produced particles from incoherent pairs @91 GeV
 - old model

new model (smaller beampipe)

CLD detector performance with smaller beam pipe at IP | E. Leogrande (CERN)

Summary

- A new design for the CLD detector (post-CDR) has been realized for a new FCC-ee interaction region with a reduced beam pipe radius (15 mm —> 10 mm) at the IP
 - + vertex barrel closer to interaction point
- A very first look at the performance of the post-CDR CLD detector compared with the CDR model
 - + The **impact parameter resolutions improve**, especially for low momentum tracks
 - The transverse momentum resolution is unaffected (not shown in the talk)
 - The flavour tagging capabilities improve
 - slightly for 365 GeV, strongly for 91 GeV
 - with a dependence on polar angle observed
- Next step: analysis the flavour tagging results case by case
 - vertexing performance, jet clustering and classification
 - thorough investigation of the input variables to the BDT <u>necessary</u>
 - + part of the problem is the long time for full simulation; place where fast sim tool would be extremely helpful
- Next² step: study effect of the background in the detector performance
 - + from preliminary study: incoherent pairs do not seem to represent an issue

Extra

CLD detector performance with smaller beam pipe at IP | E. Leogrande (CERN)

LFCIPlus vertex finder algorithm

- Vertex Fitter for Primary Vertex
 - + if beam spot is constrained, beam spot centre as initial 3D point
 - 3D fit performed for the vertex position by adding χ² contribution from each track; tracks with highest χ² and above a threshold are removed
 - + *output*: minimized χ^2 , vertex uncertainty and probability, tracks associated to PV

+ Vertex Fitter for Secondary Vertices

- + tracks not associated to the PV are paired and used as seeds for the SVs
- 3D fit performed for the vertex position by adding χ² contribution from each track pair; tracks with highest χ² and above a threshold are removed + additional selection criteria (e.g. V⁰ discarded)
- + additional tracks are added to the SV and accepted if χ^2 contribution below threshold
- + at this point: tracks may have been used for more than one vertex
- to remove overlap: vertices are scanned in order of probability (high to low) and number of tracks (3 to 2); tracks associated to vertices are removed from further SVs
- + *output*: minimized χ^2 , vertices uncertainty and probability, tracks associated to SVs

Tracks association

+ Classification of tracks for vertex finder performance

- Primary: tracks originated from the primary vertex
- Bottom: tracks whose most immediate parent with a non-zero lifetime contains a b quark
- + *Charm:* tracks whose most immediate parent with a non-zero lifetime contains a c quark
- + Others: all other tracks (**τ** decays, strange hadrons, photon conversions, ...)

Name	Description	Normalization	Used by cat-
		factor	egory
trk1d0sig	d0 significance of track with highest d0 significance	1	A, B, C, D
trk2d0sig	d0 significance of track with second highest d0 significance	1	A, B, C, D
trk1z0sig	z0 significance of track with highest d0 significance	1	A, B, C, D
trk2z0sig	z0 significance of track with second highest d0 significance	1	A, B, C, D
$\mathrm{trk1pt}$	transverse momentum of track with highest d0 significance	$1/E_{\rm jet}$	A, B, C, D
$\mathrm{trk}2\mathrm{pt}$	transverse momentum of track with second highest d0 significance	$1/E_{\rm jet}$	A, B, C, D
jprobr	joint probability in the r-phi plane using all tracks	1	A, B, C, D
jprobr5sigma	joint probability in the r-phi plane using all tracks having impact	1	A, B, C, D
	parameter significance exceeding 5 sigma		
jprobz	joint probability in the z projection using all tracks	1	A, B, C, D
jprobz5sigma	joint probability in the z projection using all tracks having impact	1	A, B, C, D
	parameter significance exceeding 5 sigma		
d0bprob	product of b-quark probabilities of d0 values for all tracks, using	1	A, B, C, D
	b/c/q d0 distributions		
d0cprob	product of c-quark probabilities of d0 values for all tracks, using	1	A, B, C, D
	b/c/q d0 distributions		
d0qprob	product of q-quark probabilities of d0 values for all tracks, using	1	A, B, C, D
	b/c/q d0 distributions		
z0bprob	product of b-quark probabilities of z0 values for all tracks, using	1	A, B, C, D
	b/c/q z0 distributions		
z0cprob	product of c-quark probabilities of z0 values for all tracks, using	1	A, B, C, D
	b/c/q z0 distributions		
z0qprob	product of q-quark probabilities of z0 values for all tracks, using	1	A, B, C, D
	b/c/q z0 distributions		
nmuon	number of identified muons	1	A, B, C, D
nelectron	number of identified electrons	1	A, B, C, D
trkmass	mass of all tracks exceeding 5 sigma significance in $d0/z0$ values	1	A, B, C, D

Name	Description	Normalization	Used by cat-
		factor	egory
1vtxprob	vertex probability with all tracks associated in vertices combined	1	B, C, D
vtxlen1	decay length of the first vertex in the jet (zero if no vertex is	$1/E_{\text{iet}}$	B, C, D
	found)	,)	, ,
vtxlen2	decay length of the second vertex in the jet (zero if number of	$1/E_{\rm iet}$	D
	vertex is less than two)	, 3	
vtxlen12	distance between the first and second vertex (zero if number of	$1/E_{\rm iet}$	D
	vertex is less than two)	, , , , , , , , , , , , , , , , , , , ,	
vtxsig1	decay length significance of the first vertex in the jet (zero if no	$1/E_{\text{iet}}$	B, C, D
0	vertex is found)	/ 100	, ,
vtxsig2	decay length significance of the second vertex in the jet (zero if	$1/E_{\text{iet}}$	D
0	number of vertex is less than two)	/ 100	
vtxsig12	vtxlen12 divided by its error as computed from the sum of the	$1/E_{\rm iet}$	D
0	covariance matrix of the first and second vertices, projected along	/ 3	
	the line connecting the two vertices		
vtxdirang1	the angle between the momentum (computed as a vector sum of	$E_{\rm iet}$	B, C, D
0	track momenta) and the displacement of the first vertex	100	, ,
vtxdirang2	the angle between the momentum (computed as a vector sum of	$E_{\rm iet}$	D
0	track momenta) and the displacement of the second vertex	100	
vtxmult1	number of tracks included in the first vertex (zero if no vertex is	1	B, C, D
	found)		, ,
vtxmult2	number of tracks included in the second vertex (zero if number of	1	D
	vertex is less than two)		
vtxmult	number of tracks which are used to form secondary vertices	1	D
	(summed for all vertices)		
vtxmom1	magnitude of the vector sum of the momenta of all tracks com-	$1/E_{\rm iet}$	B, C, D
	bined into the first vertex	/ 3	, ,
vtxmom2	magnitude of the vector sum of the momenta of all tracks com-	$1/E_{\rm jet}$	D
	bined into the second vertex	, , , , , , , , , , , , , , , , , , , ,	
vtxmass1	mass of the first vertex computed from the sum of track four-	1	B, C, D
	momenta		
vtxmass2	mass of the second vertex computed from the sum of track four-	1	D
	momenta		
vtxmass	vertex mass as computed from the sum of four momenta of all	1	B, C, D
	tracks forming secondary vertices		
vtxmasspc	mass of the vertex with minimum pt correction allowed by the	1	B, C, D
_	error matrices of the primary and secondary vertices		
vtxprob	vertex probability; for multiple vertices, the probability P is com-	1	B, C, D
_	puted as $1-P = (1-P1)(1-P2)(1-PN)$		