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Introdcution

Synchrotron Radiation at FCC-ee

• FCC-ee aims for collision energies as high as
365GeV [2]

• Some experience from LEP [7]:
• weak bends
• long straight sections
• synchrotron radiation as serious background
• vacuum chamber, electronics, cables & beam

instrumentation [1]
• carefully designed collimation system
• 45.6GeV: Ec≈68 keV (average arc dipole)

• FCC-ee
• asymmetric layout (weak bends upstream)
• last bend about a 100m from IP
• 182.5GeV: Ec≈100 keV (last upstream dipole)
• limit Ec to 100 keV (last 450m)
• limit Ec to 1MeV (whole machine)

• Potential for high energy photons,
especially at top energy

• collimation system should be studied
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Figure: Schematic layout of the LEP background
collimation system [7].
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Figure: Asymmetric layout of the FCC-ee IR.
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Figure: Photon interaction processes in lead [3].
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Characterizing Synchrotron Radiation

Settings for the simulations
• FCC-ee t_213_sol at top energy (182.5GeV)
• 2,000 primaries
• Only beam1 (positron)
• Start 400m upstream
• Emittance ratio 0.002
• Different beam shapes:

• pencil beam
• gaussian (normally distributed, σx,y)
• halo (all particles at certain σx,y)
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Characterizing Synchrotron Radiation

The simulation can show
• Origin of photons

• elements
• different beam types
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Figure: Photon origins upstream. No photons generated in quadrupoles
with pencil beam.
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Characterizing Synchrotron Radiation

The simulation can show
• Origin of photons

• elements
• different beam types

• Hits on the beampipe wall
• for the moment: direct hits
• masks around IP
• outgoing beam: heavy load
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Figure: Distribution of hits (beam pipe) along the beam path.
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Characterizing Synchrotron Radiation

The simulation can show
• Origin of photons

• elements
• different beam types

• Hits on the beampipe wall
• for the moment: direct hits
• masks around IP
• outgoing beam: heavy load

• Energy distribution
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Figure: Energy distribution. Beam with higher energy tail for Gaussian or
halo.
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Figure: Looking at hits caused by photons from selected elements.
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Figure: Photon energies for hits within ±10m around IP.
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Collimation of Synchrotron Radiation at FCC-ee

Considerations
• Collimators induce scattering
• Far from interaction region
• Settings: beam size

• σ =
√
ϵβ

• ϵx = 1.45 nm
• ϵy = 2.91 pm

• Close to quadrupoles
• Starting with collimators at:

• Downstream of BWL.2 (case A)
• Downstream of QT1L.2 (case B)

• Start with setting:
COLH around 15 σx

Table: Horizontal beam size at certain magnets upstream

NAME BETX σx [µm] 15σx [mm] 10σx [mm]

BWL.2 333.36 695.25 10.43 6.95
QC3L.2 303.68 663.58 9.95 6.63
QT1L.2 329.07 690.76 10.36 6.91
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Figure: Horizontal and vertical beta function last 100m upstream.
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Collimation of Synchrotron Radiation at FCC-ee
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Figure: Top view on radiation fans coming from last two upstream bends. bend start, bend end
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Effect in the Interaction Region

Preliminary Results

• First impression:
• Far collimator (BWL.2, 15σx)

seems to not reduce direct
hits

• However, at LEP far
collimators have been very
useful

• Collimator after QT1L.2
reduces hits close to IP 20 15 10 5 0 5 10
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Figure: Photons hits on the beam pipe without any collimation (−20m to
10m of the IP).
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Figure: Hits in the interaction region with collimator after BWL.2 (case A).
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Figure: Hits in the interaction region with collimator after BWL.2 (case A).
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Figure: Hits in the interaction region with collimator after QT1L.2 (case
B).
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Outlook

Summary

• Preliminary study & proof of principle
• Collimators help to reduce SR background

(additional to masks)
• Collimator hierarchy (development)
• Focus on upstream collimators (for now)
• Position and settings vs. effect on the IR 200 150 100 50 0 50
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Figure: Example for a combination of collimators.
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Outlook

Perspective

• Collimation study in very early phase:
• no misalignments
• scattering has to be considered
• reflection

• Collimator study - Optimize:
• position
• setting
• combination
• material

• Coordinate with beam dynamics (lifetime)
• MDISim still under development
• Benchmark attempt with SuperKEKB

ongoing in parallel
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Thank you for your attention.
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Tools
• Toolkit used for simulations:

MDISim [3]
• Interface:

• MAD-X [5]
• ROOT [6]
• Geant4 [4]

• No full-turn tracking
• Detailed tracking: last few
hundred meters BC2L.2

b1

DRIFT_860
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Figure: Due to symmetry starting with single beam studies: b1, e+ …
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Figure: … to track beam particles and photons from upstream of the IP.
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Collimator Design

Figure: SuperKEKB horizontal collimator
Figure: Realization in MDISim
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Collimator Design
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