Synchrotron Radiation in the Machine-Detector Interface of FCC-ee

- Starting the Study of a Collimation System -

Marian Lickhof

UH .
[a¥ Universitdit Hamburg

FCC-Week Brussels - 27 th June 2019

1/12



Overview

Characterizing Synchrotron Radiation

Possible Collimator Locations

Effects on Backgrounds at IP

Outlook



Introdcution

Synchrotron Radiation at FCC-ee

® FCC-ee aims for collision energies as high as
365 GeV [2]
® Some experience from LEP [7]:

® FCC-ee
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Figure: Schematic layout of the LEP background
collimation system [7].
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Introdcution

Synchrotron Radiation at FCC-ee

® FCC-ee aims for collision energies as high as

365 GeV [2] o global reference orbit (MAD)

® Some experience from LEP [7]:
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Figure: Asymmetric layout of the FCC-ee IR.
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Introdcution

Synchrotron Radiation at FCC-ee

® FCC-ee aims for collision energies as high as
365 GeV [2]
® Some experience from LEP [7]:

® weak bends
long straight sections
synchrotron radiation as serious background
vacuum chamber, electronics, cables & beam
instrumentation [1]
carefully designed collimation system
® 45.6GeV: Ec~68keV (average arc dipole)
® FCC-ee
® asymmetric layout (weak bends upstream)
® last bend about a 100 m from IP
® 182.5GeV: Ecx100 keV (last upstream dipole)
® |imit E¢ to 100 keV (last 450 m)
® |imit Ec to 1MeV (whole machine)
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Figure: Photon interaction processes in lead [3].
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FCC-ee aims for collision energies as high as
365 GeV [2]
Some experience from LEP [7]:

® weak bends
long straight sections
synchrotron radiation as serious background
vacuum chamber, electronics, cables & beam
instrumentation [1]
carefully designed collimation system
® 45.6GeV: Ec~68keV (average arc dipole)
FCC-ee
® asymmetric layout (weak bends upstream)
® last bend about a 100 m from IP
® 182.5GeV: Ecx100 keV (last upstream dipole)
® |imit E¢ to 100 keV (last 450 m)
® |imit Ec to 1MeV (whole machine)

Potential for high energy photons,
especially at top energy

collimation system should be studied
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Characterizing Synchrotron Radiation

Settings for the simulations
® FCC-ee t_213_sol at top energy (182.5 GeV)
® 2,000 primaries
® Only beamz1 (positron)
® Start 400 m upstream
® Emittance ratio 0.002

® Different beam shapes:

® pencil beam
® gaussian (normally distributed, oyy)
® halo (all particles at certain oy)
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Characterizing Synchrotron Radiation

Origin of SR photons
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Figure: Photon origins upstream. No photons generated in quadrupoles
with pencil beam.

racterizing Synchrotron Radiation 4/12



Characterizing Synchrotron Radiation

The simulation can show

® Origin of photons
® elements
® different beam types
® Hits on the beampipe wall
® for the moment: direct hits
® masks around IP
® outgoing beam: heavy load

SR photons hitting beampipe
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Figure: Distribution of hits (beam pipe) along the beam path.
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Characterizing Synchrotron Radiation

Energy distribution

® Origin of photons

® elements
® different beam types

® Hits on the beampipe wall \H,‘ L"-,n,-.ﬁﬂ
® for the moment: direct hits 10t
® masks around IP .|'|.r|.|-|_l
® outgoing beam: heavy load l“_IJ
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Figure: Energy distribution. Beam with higher energy tail for Gaussian or
halo.
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Characterizing Synchrotron Radiation

The simulation can show

® Origin of photons

® elements
® different beam types

® Hits on the beampipe wall
® for the moment: direct hits
® masks around IP
® outgoing beam: heavy load

® Energy distribution
® More analysis (development)
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Figure: Looking at hits caused by photons from selected elements.
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Characterizing Synchrotron Radiation

Energy distribution

[ pencil
1 Gauss
[ Ring

The simulation can show

® Origin of photons

® elements
e different beam types

® Hits on the beampipe wall
® for the moment: direct hits
® masks around IP
® outgoing beam: heavy load
® Energy distribution

® More analysis (development) 1000
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Figure: Photon energies for hits within 10 m around IP.
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Collimation of Synchrotron Radiation at FCC-ee

Considerations

® Collimators induce scattering
® Far from interaction region

© Settings: beam size Table: Horizontal beam size at certain magnets upstream
* o=
. &= ;"g ;m NAME  BETX o, [pml 150, [mm] 100, [mm]
€y = 2.
Y BWL2 33336  695.25 10.43 6.95
® Close to quadrupoles QC3L.2  303.68  663.58 9.95 6.63
® Starting with collimators at: QmiL.2  329.07  690.76 10.36 6.91

® Downstream of BWL.2 (case A)
® Downstream of QT1L.2 (case B)

® Start with setting:
COLH around 15 oy

Possible Collimator Locations 5/12



Collimation of Synchrotron Radiation at FCC-ee

B Function upstream of the IP

Considerations [l il

—— BETY A
® Collimators induce scattering

® Far from interaction region l
® Settings: beam size /

® o =VeB
® ¢ = 1.45nm
® ¢ =2.91pm /

B,y [m]

® Close to quadrupoles
® Starting with collimators at:

® Downstream of BWL.2 (case A)
® Downstream of QT1L.2 (case B)

® Start with setting: ~100 -8 R o
COLH around 15 oy

Figure: Horizontal and vertical beta function last 100 m upstream.
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Collimation of Synchrotron Radiation at FCC-ee

/

Figure: Top view on radiation fans coming from last two upstream bends. bend start, bend end
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Effect in the Interacti

SR photons hitting beampipe
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Figure: Photons hits on the beam pipe without any collimation (—20m to
10 m of the IP).
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Effect in the Interacti

SR photons hitting beampipe
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Figure: Hits in the interaction region with collimator after BWL.2 (case A).
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Effect in the Interacti

SR photons hitting beampipe
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® First impression:
® Far collimator (BWL.2, 150%)
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hits
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Figure: Hits in the interaction region with collimator after BWL.2 (case A).
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Effect in the Interacti

SR photons hitting beampipe

Preliminary Results 1500
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® First impression: g
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Figure: Hits in the interaction region with collimator after QT1L.2 (case
B).
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Outlook

SR photons hitting beampipe

coLHBWL.2

Summary

coLHaTIL2

® Preliminary study & proof of principle

® Collimators help to reduce SR background
(additional to masks) | l]

Collimator hierarchy (development)

photons/bin

@

R masks

® Focus on upstream collimators (for now
N p ) ( ) Pt — IJ ,rL
® Position and settings vs. effect on the IR = B

-50 [
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Figure: Example for a combination of collimators.
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Outlook

Perspective

® Collimation study in very early phase:

® no misalignments
® scattering has to be considered
® reflection
® Collimator study - Optimize:
® position
® setting
® combination
® material

® Coordinate with beam dynamics (lifetime)
® MDISim still under development

® Benchmark attempt with SuperKEKB
ongoing in parallel

Outlook 7/12



Thank you for your attention.
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Tools

® Toolkit used for simulations:
MDISim [3]
® |nterface:

® MAD-X [s] v}

* ROOT [6] / ) "

® Geants [4] ! oRe
® No full-turn tracking ' oR‘F"‘aaw

y

Figure: Due to symmetry starting with single beam studies: bz, e ...
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Tools

® Toolkit used for simulations:
MDISim [3]
® Interface:
® MAD-X [5]
® ROOT [6]
® Geant4 [4]
® No full-turn tracking
® Detailed tracking: last few
hundred meters

Figure: ... to track beam particles and photons from upstream of the IP.



Collimator Design

. ) Figure: Realization in MDISim
Figure: SuperKEKB horizontal collimator
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Collimator Design
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