HE-LHC IR Optics

Leon van Riesen-Haupt, Jose Abelleira, Emilia Cruz Alaniz, Andrei Seryi (Oxford)

Jacqueline Keintzel, Michael Hofer, Thys Risselada (CERN)
• LHC Infrastructure
 – LHC Tunnel Constraints
 – (Possibly) SPS injection at 450 GeV

• FCC-hh Technology
 – 13.5 TeV Beam Energy
 – Nb$_3$Sn Technology
 – Larger Beam separation

• Updated Arc Cell
 – 18 and 23 Cell Layout
 – New Dispersion Suppression Scheme
 – Update Correction Schemes
Requirements

- **Triplet**
 - Achieve 0.45 m β^*
 - 16.8 σ Crossing Angle
 - 12.5 σ Aperture
 - Sufficient shielding for 10 ab$^{-1}$ lifetime
 - Dose limit ~ 30-100 MGy
 - As short as possible

- **Separation Dipoles**
 - Achieve 250 mm separation

- **Matching Section**
 - Match rigid beam

- **Correction Schemes**
 - Dispersion Suppressor
 - Spurious dispersion correction
 - Dynamic aperture with triplet errors
• Triplet optimisation code
 – Collaboration between optics and energy deposition (Jose Abelleira)
 – “Alternative Optics” talk on Tuesday
• Based on experience of FCC-hh
 – Allow for Additional β^* Margin
 – Uniform Beam Pipe
 – Magnet Length Limited to 15 m
• HL-LHC V1.2 Triplet as starting point
 – Use Magnet Separations
 – Initial estimate $\frac{13.5 \text{ TeV}}{7 \text{ TeV}} \approx 90 \%$ increase in length
 • Without considering increased shielding
• Converged on triplet with 2 cm shielding
• Only 35% longer than HL-LHC V1.2 triplet
 – 50% more magnetic length
• “Un-split” Q1 and Q3 magnet
 – Absorbed gap in inter magnet spacing
 – Safety margin
Results Continued

• Aperture of 18 σ
 – Larger than required 12 σ
 – Allow to further reduce β^* by factor ~2 if needed

• Uniform magnetic aperture and shielding

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Q1</th>
<th>Quadrupole Q2</th>
<th>Q3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-magnets</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sub-magnet Length (m)</td>
<td>12.9</td>
<td>10.5</td>
<td>12.9</td>
</tr>
<tr>
<td>Coil Radius (mm)</td>
<td>70.4</td>
<td>70.4</td>
<td>70.4</td>
</tr>
<tr>
<td>Gradient (Tm⁻¹)</td>
<td>145</td>
<td>145</td>
<td>145</td>
</tr>
<tr>
<td>Shielding (mm)</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
• FLUKA Simulation
 – Based on FCC-hh magnet model
• Energy deposition safely below 30 ab\(^{-1}\) margin
• Can reduce further by alternating crossing
• Extra room for shielding in Q1 and Q2 if needed
• 11 m β^*
• 16.8 σ separation and crossing
Separation Dipoles

- Compact as possible
 - Compensate for longer triplet
- Increased beam rigidity
- Requires superconducting dipoles
- Radiation studies required

<table>
<thead>
<tr>
<th>Property</th>
<th>D1</th>
<th>D2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aperture Type</td>
<td>Single</td>
<td>Double</td>
</tr>
<tr>
<td>Coil Radius (mm)</td>
<td>80</td>
<td>38.5</td>
</tr>
<tr>
<td>Shielding (mm)</td>
<td>21.5</td>
<td>9</td>
</tr>
<tr>
<td>Length (m)</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Field (T)</td>
<td>9.7</td>
<td>7.7</td>
</tr>
</tbody>
</table>
Energy Deposition

- Energy in D1 below 30 Mgy limit
- Large amount of deposition in D2
 - 9 mm not sufficient
• Possibility of installing shielding at an angle
 – Extrude cylinder shielding block
 – Allows 9 mm – 27 mm shielding
• Reduces dose
 – 40 MGy
• Further Reduction Possible
 – Split D2
Matching Section

• Based on HL-LHC Matching Section
 – Space reserved for crab cavities and instrumentation

 \[V_{cc} \approx \frac{cE_{\text{beam}} \theta}{\pi f \sqrt{\beta \beta_{cc}}} \approx 10 \text{ MV} \]

 • Slightly higher than ~6.6 MV in HL-LHC
 – Layout of quadrupoles

• Adjusted Quadrupole Lengths
 – Match without strength constraints
 – Lengthen to achieve correct integrated strength

• Similar process for dispersion suppressor

• Matched for 23 and 18 cell lattice
Matching Section

- Twiss matched to arc
- Phase advance matched to 3rd and 4th sextupole
 - Instead of 1st and 2nd
- Small quadrupole increase
 - Distances between quadrupoles \sim 20 m
 - Dispersion suppressor quadrupoles increase 25%

<table>
<thead>
<tr>
<th>Quadrupole</th>
<th>Length (m)</th>
<th>Increase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LHC</td>
<td>HE-LHC</td>
</tr>
<tr>
<td>Q4</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>Q5</td>
<td>4.8</td>
<td>5.8</td>
</tr>
<tr>
<td>Q6</td>
<td>4.8</td>
<td>7.2</td>
</tr>
<tr>
<td>Q7</td>
<td>2×3.4</td>
<td>2×5.1</td>
</tr>
</tbody>
</table>
Spurious Dispersion

- Arises from crossing angle bumps
- LHC-like correction
 - Bump in arcs adjacent to EIR
 - Correction through quadrupoles and sextupoles
- Results in no dispersion in adjacent IRs
Spurious Dispersion

- Arises from crossing angle bumps
- LHC-like correction
 - Bump in arcs adjacent to EIR
- Correction through quadrupoles and sextupoles
- Results in no dispersion in adjacent IRs
Sixtrack studies
 - 23-Cell Lattice
 - 10^6 turns

Double tuning applied
 - FCC experience (E. Cruz-Alaniz)

Triplet errors applied
 - Based on HL-LHC error table
 - 9σ DA

Corrections
 - Non-linear local correction
 - Coupling correction
 - 24σ DA
Double Tuning – IR4

- RF insertion
- Based on LHC
- Additional quadrupole
 - Extra freedom for tune
 - Change tune by changing optics
 - No beating in cavities
- Range of π in both planes
 - Double tuning
 - Should be repeated with IR6
Double Tuning – IR4

• RF insertion
• Based on LHC
• Additional quadrupole
 – Extra freedom for tune
 – Change tune by changing optics
 – No beating in cavities
• Range of π in both planes
 – Double tuning
 – Should be repeated with IR6
• Full HE-LHC EIR Design
• Triplet Optimised using FCC-hh Methods
 – Length and shielding optimised
 – Significantly shorter than expected
• Separation Dipole Design
 – Including radiation studies and shielding options
• Matching Section
 – For both lattices
 – Injection optics
• Dynamic Aperture
 – Meets requirements
 – Full set of correction tools