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Why shield the magnetic field?

o Efficiency matters

o SRF Nb vs RF -> dissipated power/m can be improved up to = 106

o Cryogenic losses: 1 W (RF) -> 1 KW (from the power grid)
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Resistance Minimization in SRF Cavities by Reduction
of Thermocurrents and Trapped Flux, J-M Kdszegi

Takeaway: We need to decrease the residual resistance



Trapped flux in RF field

o Meissner effectin Nb: T<Tc, Bo#0

Part of the
magnetic flux
penetrates

o Type-ll superconductors
can exhibit non-complete
Meissner effect

o Single flux line string oscillations

H(t) u(z,t)

Left image: Gurevich A and Ciovati G 2013 Phys. Rev
Right image: Surface Resistance Minimization in SRF Cavities by Reduction of Thermocurrents and Trapped Flux, J-M K&szegi


https://en.wikipedia.org/wiki/Meissner_effect

Residual resistance due to trapped flux

o How much contribution?

o Model without oscillation - bulk Nb cavities

R+(Bo) By ( popaw ' For a bad Nb cavity that traps
P 2B \ 2 Earth's field B ~ 40 uT - not shielded
~ A .
Relative amount of the flux Rs in normal state %

. SO Rp ~ 110 nQ) —» Q ~ few x 10°
line cores in a given volume

R(1 pT, 1.3 GHz) = 2.8 n{2

o What knobs to decrease?

RB — B() X H(VT) X S(f, BRF)

Remove the Expel all the Reduce the
B-field flux sensitivity

Takeaway: trapped DC magnetic flux from insufficient
shielding —> major residual contribution knob



Design of the magnetic shield

o Sources of ambient magnetic field By Earth’s field
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o Lessons learned from three
recent studies:

o Questions to answer

-> Passive or active shield?

-> Passive + active shielding -> How many shields?

HG SPL, Sotiris Papadopoulos
(HG SPL, Sotiris Papadopoulos) — > Where to put?
-> Active shielding .
: : -> Material?
(V6 at SM18 , Mikko Karppinen)

-> Mapping (V3 at SM18) -> Homogeneity?



Passive shielding

o Use high mu-material —> concentrate field inside material
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o Multi-layer —> less material —> better performance

o Keep the layers spaced (decoupling)
o Spherical shells —> best shielding and homogeneity

Takeaway: best strategy is to shield the shield



Passive shielding study — cryomodule design of HG SPL

o Cylindrical passive shield — orientation dependent
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Transverse factor S| = % Axial factor S” > ’LLT + 1 Optimal to use 2 materials
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o Strategy:
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Permeability

o First shield closest to cavity —> cold

50000 —

o Second shield, keep decoupled —> warm
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8 “SUB-MICRO-TESLA MAGNETIC SHIELDING DESIGN FOR CRYOMODULES IN
THE HIGH-GRADIENT PROGRAM AT CERN?”, S. Papadopoulos, SRF2017



Passive shielding results

o Goal: reach shielding factor of S =500 —> 0.1 uT for B = B, =50 uT
R <11 nQ2

Field distribution - simulation
vertical
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o Non-homogenous even o Axial shielding cannot reach spec
for homogenous ambient
field (leakage)



Passive shielding — lessons learned

o Design: Transverse leakage

Modifications can help
o Axial field harder to shield —> keep length small

o Homogeneity is challenging (leakage from openings)

o Bigger cavity —> thicker shield to obtain spec
o Avoid axial coupling —> shorter length preferred

_ o _ Axial leakage
o Computationally not trivial: thickness: ~ few mm, length: ~ few meter

o Realisation:

o A lot of work needed: press forming, welding, cutting

o Tradeoff: the more structural work the less the performance of material

o Heat treatment helps (ongoing studies) —> the higher the better but possible deformations
o Cryogenic materials used: Cryophy/Cryoperm —> production might vary in performance

o Cold shields —> need to cool properly

Takeaway: far from straightforward and cheap but
quite efficient for simple and small volumes
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Active shielding

o Active shielding —> generate opposing field inside the shielded volume

o Homogeneity and orientation —> superimpose fields of different coils

o Helmholtz pair

Compensated field

o Most homogenous central
field —>h=R

o Large homogeneous region
—> large coils needed

o Shown—> ~1.15 m (diameter
of HG SPL vacuum vessel)

Takeaway: Helmholtz coil — good homogeneity for its

simplicity, but insufficient
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Active shielding study — V6 in SM18
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o Goal: Control B-field in vertical cryostat
V6 at SM18 used for 400 MHz studies

o Motivation:
Study Q-slope due to external B-field in
Nb/Cu cavities

o Provisional specs

o Field uniformity 0.5% —> ~0.25 uT
in a volume of 400 MHz LHC cavity

olrapping studies —> 100 uT
with free orientation

o [ron-free design

o Cu-conductor — no active cooling

o Solenoid + 2 x cos theta saddle coils

Vertical cryostat V6 Saddle caoll
21.4m

Insert
pre-fabricated
module

available gap
~10 cm
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Active shielding results

o Transverse distribution o Earth’s field + coils ON
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Active shielding - lessons learned

o Field uniformity of 0.5% is achievable
—> no leakage with end openings Fibre-reinforced composite

o Realization —> pre-fabricated
fibre-reinforced composite

o Power not issue (low field ~ 50 uT)

o Good expertise —> magnet design and
gradient coils for MR imaging

o Mapping needed —> Needs sensors

Takeaway:

Seems sufficient for stand alone shielding solution
Compensate with respect to what?
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B-field mapping of V4 in SM18
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o Motivation: Flux
expulsion measurements
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o B-field Mapping in Vertical Cryostat V4 g\ " "y

o Minimal passive shielding exists
o Coils — unknown positions and geometry

o 9 (single axis) sensors available

o 12 azimuthal positions
o 3 height levels
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B-field mapping results

o How much field is left?

Local B-field compensation results in a
B <— non-negligible field in other points
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o Ambient B-field inside V4

B-field mapping results

—= Box 1, bottom | :
Box 2, middle

' .| —=Box 1, bottom

Box 2, middle
—= Box 3, top

—= Box 3, top
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B-field mapping results

o B-field — compensation coils

o Apply 1000 mA to each coil and measure separately
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o Spatial average of the compensated field inside V4

B-field earth for passive actlye
Geneva: ~3.4 times ~4 .2 times
reduction reduction
46.9 uT >  13.9uT > 3.35.T
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B-field mapping lessons learned

o Procedure to efficiently cancel the field:

o Map the “hot spots” at least once —> verify
homoageneity level

Fluxgate sensor

N

o Minimize ensemble, not locally

B
o Fluxgate Maanetometer
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Wrap-up: Passive/Active shield?

o Passive

o Transverse homogeneity is less of an issue,
even if holes exist

o More flexible and compact (thickness)

o Can be used locally to homogenize

o Active

o Field strength is not an issue

o Power not issue (low field ~ 50 uT )—>
switch on only just before SC transition

o Reconfigurable —> long term “investment”

o Homogeneity is less of an issue —>
cylindrical openings don’t leak

o Scaling for a cryomodules
possible

o Axial homogeneity is an issue (end holes)

o Field strength is an issue
(saturation possible)

o Reproducibility more challenging
(not trivial to produce)

o B-field mapping: at least 3-axis per
shield, but map hot spots first

o Some components might be
magnetized since active stronger fields

o Circumferential apertures much more
challenging than passive shield
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Wrap-up: Passive/Active shield?

o Passive

o Transverse homogeneity is less of an issue,
even if holes exist

o More flexible and compact (thickness)

o Can be used locally to homogenize

o Axial homogeneity is an issue (end holes)

o Field strength is an issue
(saturation possible)

o Reproducibility more challenging
(not trivial to produce)

oacive  Thank you for your attention!

o Field strength is not an issue

o Power not issue (low field ~ 50 uT )—>
switch on only just before SC transition

o Reconfigurable —> long term “investment”

o Homogeneity is less of an issue —>
cylindrical openings don’t leak

o Scaling for a cryomodules
possible

: - hield,
but mapping first

o Some components might be
magnetized since active stronger fields

o Circumferential apertures much more
challenging than passive shield
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Backup: Passive + active shield

o Axial compensation can be compensated by solenoid

without solenoid

shielding factor [log|
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length along the surface of the cavity [mm)]

o Passive shield — homogeneity
can be degraded —> more
difficultly to shield with active shield
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Earth’s magnetic field calculation

Geneva coordinates:

latitude: 46.204391° N |
longitude: 6.143158° E : ST e

Geneva coordinates (Swiss projection LV03) :
East : 500013.259
North 1 1 7 81 99 4 4 https://www.swisstopo.admin.ch/en/maps-data-online/calculation-services/navref.html

B-field B-field
Calculator 1 Calculator 2

https://www.swisstopo.admin.ch/fr/cartes-donnees-en-ligne/

https://geomag.nrcan.gc.ca/calc/mfcal-en.php calculation-services/deklination.html

X =22,257 nT Declination: 2.14425
Y =766nT Meridian convergence -0.94690 F
Z=41,934 nT Inclination: 62.07666

Total field (F) [nT]: 47444
Total field = 47,481
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Passive shielding backup
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o What is the maximum compensation that can be achieved?

o Strategy: find the coil currents which minimize the spatially averaged B-field

Set of random coil Obtain B-field, Evaluate B-field

amplitudes add to Bo averaged

1.25

£
(@)
-
o
1z o
o Pl coil 3
e o Numerically found currents [mA]:
o
-(% -0.1095 0.0721 0.1544
O 1.08)
o
A
0.95 Suppression of the spatially
- averaged field by additional 8.4 %
= RS Bavg ~ 3.025 uT

Current amplitudes relative to 1000 mA
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