FCC-ee Beam Dump System Concept and Technological Challenges

A. Apyan¹, W. Bartmann², B. Goddard², A. Lechner², S. Ogur², K. Oide³, F. Zimmermann²

- 1. ANSL, Yerevan, Armenia
- 2. CERN, Geneva, Switzerland
- 3. KEK, Tsukuba, Japan

Different options

- CDR option: Using FCC-hh tunnel with dilution
- External dump in short alcove without dilution
- Internal dump with dilution

Dump material

- Graphite is the material of choice for many particle dumps because of its excellent material properties
- For CDR option of beam dump a density of 1.7 g/cm³ was used

For the alternative FCCee studies, we assume a low density Graphite grade (1 g/cm³) similar to the one already used in the LHC dump

Present Baseline Use of FCC-hh tunnel

- Assuming the 2.5 km dump tunnel for FCC-hh is built
- Design existing with HW parameters for kickers (extraction and dilution), septa and dump block
- Very similar to FCC-hh dump system apart from dump line focussing not needed here

The system of extraction kickers and a septum deflects the beam by 12 mrad.

The beam is spread over the front surface of the dump in a spiral pattern by means of horizontal and vertical dilution kicker magnets.

Dilution system and sweep on dump

•Archimedean spiral with equal spacing between turns

- Fixed outer sweep radius as 200 mm
- Bunch spacing depends on inner radius
- Maximum kicker frequency 200 kHz
- •57 turns optimum 0.89 mm spacing

The pattern are constructed such that the temperature in the dump remains acceptable (below 2000 °C).

60000

70000

Dilution kicker parameters		
Number of turns		57
Sweep length	us	333.0
Frequency	kHz	193
к	mrad	0.083
В	Т	0.0486
V gap	mm	70
Н дар	mm	70
magnet length	m	1
mu0		1.26E-06
Inductance (incl. cables + stray)	uH	3.757
current	Α	2707.8
switch voltage	kV	12.34

-100

10000

20000

30000

Bunch number

Deposited energy density in Graphite

FCC-hh tunnel option - features

- 2.5 km tunnel branching of in extended straight section PD not compatible with RF
- Septum strength defined by hadron cryostats → factor 4 larger deflection angles than needed for extracting from ee machine
- Original dilution pattern leads to ~500 deg on dump; up to 2000 deg still acceptable for damage limits → could reduce tunnel length, dilution kicker strength or frequency
- Most 'capable' option in case beam parameters change for the worse

Beam parameters relevant for dump system

FCC-ee Conceptual Design Report

• Z, WW operation most critical for beam power on absorbers

- In case of dilution this drives the dump pattern and dilution kicker frequency
- tt operation with highest energy drives kicker/septum/diluter strength
 - Here we would not even need dilution on the dump

• Envisage system optimisation

- Dilution: allow for reduced beam pattern for tt operation where energy is highest but beam power lowest
- Extraction through coil window

Table S.1: Machine parameters of the FCC-ee for different beam energies. For $t\bar{t}$ operation a common RF system is used.

	Z	WW	ZH	tī			
Circumference [km]	97.756						
Bending radius [km]	10.760						
Free length to IP l^* [m]	2.2						
Solenoid field at IP [T]	2.0						
Full crossing angle at IP θ [mrad]	30						
SR power / beam [MW]	50						
Beam energy [GeV]	45.6	80	120	175	182.5		
Beam current [mA]	1390	147	29	6.4	5.4		
Bunches / beam	16640	2000	328	59	48		
Average bunch spacing [ns]	19.6	163	994	2763	3396		
Bunch population [10 ¹¹]	1.7	1.5	1.8	2.2	2.3		
Horizontal emittance ε_x [nm]	0.27	0.84	0.63	1.34	1.46		
Vertical emittance ε_y [pm]	1.0	1.7	1.3	2.7	2.9		
Horizontal β_x^* [m]	0.15	0.2	0.3	0.3 1.0			
Vertical β_y^* [mm]	0.8	1.0	1.0	1.6			
Energy spread (SR/BS) σ_{δ} [%]	0.038/0.132	0.066/0.131	0.099/0.165	0.144/0.186	0.150/0.192		
Bunch length (SR/BS) σ_z [mm]	3.5/12.1	3.0/6.0	3.15/5.3	2.01/2.62	1.97/2.54		
Piwinski angle (SR/BS) ϕ	8.2/28.5	3.5/7.0	3.4/5.8	0.8/1.1	0.8/1.0		
Energy loss / turn [GeV]	0.036	0.34	1.72	7.8	9.2		
RF frequency [MHz]	400		400 / 800				
RF voltage [GV]	0.1	0.75	2.0	4.0/5.4	4.0/6.9		
Longitudinal damping time [turns]	1273	236	70.3	23.1	20.4		
Energy acceptance (DA) [%]	±1.3	±1.3	±1.7	-2.8 +2.4			
Polarisation time t_p [min]	15000	900	120	18.0	14.6		
Luminosity / IP [10 ³⁴ /cm ² s]	230	28	8.5	1.8	1.55		
Beam-beam ξ_x/ξ_y	0.004/0.133	0.010/0.113	0.016/0.118	0.097/0.128	0.099/0.126		
Beam lifetime by rad. Bhabha scattering [min]	68	59	38	40	39		
Actual lifetime incl. beamstrahlung [min]	> 200	> 200	18	24	18		

٠

...

External dump without dilution

- Extract beam blow up with focussing structure and possibly spoilers in dump line – place dump in an alcove at the end of the LSS
- No active dilution system required \rightarrow robust wrt machine protection
- Location of the dump system
 - Suggest placing kicker/septum 350 m upstream the end of the LSS and place dump in an alcove (short tunnel/cavern of 10-20 m length) where the arc tunnel is bending away
 - Alternatively can extract anywhere in the LSS and place the dump in middle of straight RP, integration, etc to be checked

External dump

- Use triplet to blow up betas in dump line
- If spoiler is deployed the full extraction system (kicker to dump) takes 350 m
 - Spoiler must not be too thick (say < X₀/4) and transverse spot size needs to be large enough such temperatures remain acceptable
 - Need 400 km betas at spoiler
 - 70 m distance between spoiler and dump
- Without spoiler the system requires 700 m
 - Need 5000 km betas at dump

<u>Option 1:</u> blow up transverse beam size such that the dump can sustain the impact of the full beam on a single spot

<u>Option 2:</u> in addition to option 1, use a spoiler upstream of the dump which enhances the transverse distribution and hence reduces length of dump line

External dump

External dump

Peak temperatu 800 600 Transverse dose map at a depth of 170 cm) 400 200 45.6 GeV, I_b=1.7x10¹¹, 16640 bunches 0 400 500 100 200 300 0 Without spoiler: With spoiler: Dose (kJ/g) Dose (kJ/g) 10^{1} 10^{1} 10 10 10⁰ 10^{0} 5 5 y (cm) y (cm) 10⁻¹ 10-1 0 0 10⁻² 10⁻² -5 -5 10⁻³ -10 10⁻³ -10 -10 -5 10 5 0 -10 -5 5 10 0 x (cm) x (cm) FCCW19, Crowne Plaza Brussels Le Palace

1600

1400

1200

1000

(deg C)

Without spoiler With spoiler

 (1 g/cm^3)

Graphite dump

600

 The two options are equivalent in terms of peak temperature inside the dump

Internal dump

- Deflect/dilute like for the SPS dump system
 - Extraction/dilution system combined or separated
 - Betas at dump > 1 km for suggested dilution pattern \rightarrow 150 180 m system length
- Active dilution system
- RP considerations to define needs of shielding/alcove
 - Into alcove where the tunnel starts bending away or along the LSS

Dump

Dose (kJ/g)

Assumed dilution pattern:

Vertical speed v= 350 m/sec on dump surface \rightarrow 1 mrad, 3 us rise time

Horizontal dilution= 8 kHz, amplitude = 5 cm, 0.5 mrad \rightarrow reasonable kicker parameters

Layout for both alternatives to CDR

- For the shortest system internal dump with active dilution and minimum needed extraction angles → beam separation of 0.5 m at the end of the straight, directly on the beam line
 - A good km of free space between extraction systems for other systems
- With alcove of several 10 m where arc starts get reasonable distance for shielding
- Both internal options are modular, ie can also be placed at any other location in the straight
 - Then RP integration, etc needs to be checked carefully

Conclusion

- Two alternatives to CDR beam dump option suggested
- CDR option is very capable and heavy in terms of HW and tunnel length
- Alternatives with greatly reduced HW needs for kickers/septum and it does not need a tunnel
- System without active dilution possible \rightarrow robust for machine protection
- System with active dilution of ~180 m length → leaves ~1 km of LSS free for other systems. But operational experience from the internal dump at the SPS shows, that an internal dump on the beam line is not the preferred solution (engineering-wise it is much more challenging and a less robust solution).
- To be studied: protection devices, failure scenarios, full optimisation of all options (CDR dump pattern to reduce, extr/dilution kickers combined, spoilers, civil engineering, integration, RP)