Beam instrumentation for FCCee

T. Lefevre CERN

- Introduction
- Overview of Beam instrumentation
 - Main requirements
 - Critical issues
 - Engineering challenges
 - Detector choices
- Future steps and Conclusions

FCCee Layout

FCCee Layout

Collider rings

C ≈ 97.8 km

Main Booster Ring (BR)

C ≈ 97.8 km, 20-182.5GeV

Beam instrumentation similar to
Linear Collider study and
Low-emittance ring community

FCCee Beam instrumentation

parameter	Z	ww	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1390	147	29	5.4
no. bunches/beam	16640	2000	393	48
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.3
horiz. geometric emittance [nm]	0.27	0.28	0.63	1.46
vert. geom. emittance [pm]	1.0	1.7	1.3	2.9
bunch length with SR / BS [mm]	3.5 / 12.1	3.0 / 6.0	3.3 / 5.3	2.0 / 2.5

High beam intensity and large dynamic range

FCCee Beam instrumentation

parameter	Z	ww	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1390	147	29	5.4
no. bunches/beam	16640	2000	393	48
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.3
horiz. geometric emittance [nm]	0.27	0.28	0.63	1.46
vert. geom. emittance [pm]	1.0	1.7	1.3	2.9
bunch length with SR / BS [mm]	3.5 / 12.1	3.0 / 6.0	3.3 / 5.3	2.0 / 2.5

- High beam intensity and large dynamic range
- Small Emittances

FCCee Beam instrumentation

- FCC-ee specifics
 - High luminosity regions
 - High radiation level close IP's
 - High beam intensity
 - Wakefield effects inducing heat load
 - High SR power in the arcs would produce high X-ray dose requiring
 - Shielding (design dependent on beam energy, i.e. SR critical energy)
 - Radiation hard electronic design

Radiation hard design

 Example of state-of-the-art rad-hard electronic design from SPS@CERN for BPM and BLM

- Front-end electronic located in the tunnel Optical fibre connection to surface buildings
 - Communication ASIC (GBTx) and optical transceiver (VTRx) developed at CERN (EP) that can withstand TID levels higher than >10kGy
 - Mother board with FPGA and ADCs rad-tolerant up to TID levels of 750 Gy
 - Using COTS components (e.g. Proasic3 FPGA)

Courtesy of M. Barros Marin

Radiation hard design

 Example of state-of-the-art rad-hard electronic design from SPS@CERN for BPM and BLM

(EP) that can withsta

Mother board with FF

a transceiver (VTRx) developed at CERN ____gher than >10kGy

ADCs rad-tolerant up to TID levels of 750 Gy

Using COTS components (e.g. Proasic3 FPGA)

Courtesy of M. Barros Marin

al fibre connection to

• 6000 BPMs required for main (4000) and booster (2000) rings

From Roberto's presentation yesterday

- 6000 BPMs required for main (4000) and booster (2000) rings
- Up to 400W dissipated in one BPM Would need active cooling

E. Belli PhD thesis

•	Component	Number	$k_{loss}[V/pC]$	$P_{loss}[MW]$	
	Resistive wall	97.75km	210	7.95	
	Collimators	20	18.7	0.7	
	RF cavities	56	18.5	0.7	At Z pole
	RF double tapers	14	26.6	1.0	
	BPMs	4000	40.1	1.5	
	Bellows	8000	49.0	1.8	
	Total		362.9	13.7	

From Mauro's presentation yesterday

- 6000 BPMs required for main (4000) and booster (2000) rings
- Up to 400W dissipated in one BPM Would need active cooling
- Sub-micron resolution required for orbit measurements
- Expected misalignment / roll angles / calibration errors
 - Put some constraints on alignment requirements (Impact on cost!)

From Tessa

From Eliana

- 6000 BPMs required for main (4000) and booster (2000) rings
- Up to 400W dissipated in one BPM Would need active cooling
- Sub-micron resolution required for orbit measurements
- Expected misalignment / roll angles / calibration errors
 - Put some **constraints on alignment requirements** (Impact on cost!)
- Question on Cryo BPM in final focus quadrupole

Attempt to look in detail

- Good to have BPMs separate beam pipe!
 - No cross-talk between the two beams
- Integration of BPM in cryostat is critical
 - Routing of cryocable towards the coaxial feedthrough
 - Routing of cooling tubes

From Evgeny this morning!

Large energy stored in both Main and Booster beams would require a proper design of the machine protection and beam loss monitoring system

Large energy stored in both Main and Booster beams would require a proper design of the machine protection system and beam loss monitoring system

Design considerations

- BLM in the arcs should **not be sensitive to X-ray**
- Identifying beam losses from all different beam lines may not be trivial
 - Main rings: Detectors sensitive to beam propagation
 - Main vs booster ring : Possibly having quadrupoles at different locations ?

Optical BLM system based Cherenkov fibres

- High directivity
- Only measures charged particles

- Many experimental investigations initiated within Linear collider study
 - Crosstalk between beam losses from CLIC Drive and Main beams: M. Kastriotou et al, "BLM crosstalk studies on the CLIC two-beam module", IBIC, Melbourne, Australia (2015) pp. 148
 - Position resolution of a distributed oBLM system: E. Nebot del busto et al, "Position resolution of optical fibre-based beam loss monitors using long electron pulses", IBIC, Melbourne, Australia (2015) pp. 580
 - RF studies (Breakdown and Dark current): M. Kastriotou et al., "A versatile beam loss monitoring system for CLIC", IPAC, Busan, Korea, 2016, pp. 286

Small beam emittance

parameter	Z	ww	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
horizontal beta* [m]	0.15	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horiz. geometric emittance [nm]	0.27	0.28	0.63	1.46
vert. geom. emittance [pm]	1.0	1.7	1.3	2.9

Small beam size

< 10/100um beam sizes in ver/hor planes

 SR at high energy would suffer from Diffraction effects even in the X-ray domain and would require the use of X-ray interferometric techniques

Diffraction limit!

$$\sigma_{diff} = \frac{1.22\lambda}{4\sigma_y'} \approx 0.43\gamma\lambda$$

From Roberto's presentation yesterday

SR X-ray interferometry

From Toshi's presentation yesterday

Beam size as the Fourier transform of spatial coherence measured by interferometer

X-ray interferometry

From Toshi's presentation yesterday

Beam size as the Fourier transform of spatial coherence measured by interferometer

- Long extraction line requiring critical alignment
- · Only measure in one plane at the time
- Do not provide a transverse profile!

- Laser Wire Scanner technology developed for linear colliders
 - Based on Compton scattering using high power lasers

- Laser Wire Scanner technology developed for linear colliders
 - Based on Compton scattering using high power lasers
 - Demonstrated measurements of 1 micron beam size using modern laser technology (high power fibre laser)

15 years on R&D on ATF2 ring and extraction line

H. Sakai et al, Physical Review ST AB 4 (2001) 022801 & ST AB 6 (2003) 092802

S. T. Boogert et al., PRSTAB 13, 122801 (2010)

L. Corner et al., IPAC, Kyoto, Japan (2010) pp3227

- Laser Wire Scanner technology developed for linear colliders
 - Based on Compton scattering using high power lasers
 - Demonstrated measurements of 1 micron beam size using modern laser technology (high power fibre laser)
 - Similar hardware used for Compton polarimeter
 - Relatively expensive

Imaging Cherenkov diffraction radiation as a simple alternative

Imaging Cherenkov diffraction radiation as a simple alternative

First test on Cornell electron-positron storage ring in 2017-18

R. Kieffer et al., "Direct Observation of Incoherent Cherenkov Diffraction Radiation in the Visible Range", PRL **121** (2018) 054802

Imaging Cherenkov diffraction radiation as a simple alternative

Example of direct beam imaging
Using Cherenkov Diffraction radiation
at measured at ATF2/KEK in 2019

- Imaging Cherenkov diffraction radiation as a simple alternative
- Recent technique
 - Provide transverse profile
 - Very compact (cm) and cheap
 - Can be located anywhere in the ring
 - Resolution better than 30microns need some more investigations

parameter	Z	ww	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
bunch length with SR / BS [mm]	3.5 / 12.1	3.0 / 6.0	3.3 / 5.3	2.0 / 2.5

- Relatively long bunches!
- Need a bunch/bunch monitoring system with picosecond resolution to monitor the impact of Beamstrahlung
- Need resolution of 100fs to estimate the energy spread as required for energy calibration using spin depolarization technique

Bunch length from streak camera

- 200fs time resolution obtained using reflective optics and 12.5nm bandwidth optical filter (800nm) and the Hamamatsu FESCA 200
 M. Uesaka et al, NIMA 406 (1998) 371
- Do not provide online bunch/bunch measurements

Measured the spectrum of coherent radiation $S(\omega)$

$$S(\omega) \approx N^2 S_p(\omega) F(\omega)$$

N – number of particles / bunch

Measured the spectrum of coherent radiation $S(\omega)$

$$S(\omega) \approx N^2 S_p(\omega) F(\omega)$$
extrictles / bunch

N – number of particles / bunch

 $S_p(\omega)$ – single particle spectrum dependent on the source of radiation e.g. Synchrotron, Cherenkov, Diffraction radiation

Measured the spectrum of coherent radiation $S(\omega)$

$$S(\omega) \approx N^2 S_p(\omega) F(\omega)$$

N – number of particles / bunch

 $S_p(\omega)$ – single particle spectrum dependent on the source of radiation e.g. Synchrotron, Cherenkov, Diffraction radiation

 $F(\omega)$ – bunch form factor

$$\rho(z) = \frac{1}{\pi c} \int_{0}^{\infty} d\omega \sqrt{F(\omega)} \cos\left(\frac{\omega z}{c}\right)$$

<u>Coherent Cherenkov diffraction radiation</u> <u>Measured in 3 bands (60-90-110GHz)</u>

Nanosecond time response demonstrated

Courtesy of A. Curcio

Bunch length from Electro-optical techniques for higher resolution

Bunch length from Electro-optical techniques for higher resolution

 Encoding the bunch field onto a laser beam using non-linear bi-refringent EO crystals (e.g. ZnTe, GaP) having THz bandwidth

Bunch length from Electro-optical techniques for higher resolution

 Encoding the bunch field onto a laser beam using non-linear bi-refringent EO crystals (e.g. ZnTe, GaP) having THz bandwidth

 Single bunch measurements by detection the wavelength spectrum in spectrometer (position vs wavelength) of a chirped laser pulse (time vs wavelength)

Bunch length from Electro-optical techniques for higher resolution

- Encoding the bunch field onto a laser beam using non-linear bi-refringent EO crystals (e.g. ZnTe, GaP) having THz bandwidth
- Single bunch measurements by detection the wavelength spectrum in spectrometer (position vs wavelength) of a chirped laser pulse (time vs wavelength)
- Resolution demonstrated in FEL@FLASH/DESY

Berden et al. Phys Rev Lett. 99 (2007)

Conclusion and next steps

- A first conceptual design of the FCCee BI has been performed for the CDR
- No feasibility issues!
- Long list of technological challenges ahead of us
- Benefitting from the R&D done in Low-emittance ring / Linear colliders / FEL communities.
- Next step is to launch the FCCee specific R&D work to provide a realistic suite of beam diagnostic with a more precise cost estimation

Many thanks to all people involved &

Many thanks for your attention!

total RF voltage [GV]

horizontal beta* [m]

vertical beta* [mm]

long. damping time [turns]

vert. geom. emittance [pm]

horiz. geometric emittance [nm]

bunch length with SR / BS [mm]

beam lifetime rad Bhabha / BS [min]

luminosity per IP [10³⁴ cm⁻²s⁻¹]

FCCee Beam instrumentation

0.44

235

0.2

0.28

1.7

3.0 / 6.0

28

49 / >1000

2.0

70

0.3

0.63

1.3

3.3 / 5.3

8.5

38 / 18

10.9

20

1.6

1.46

2.9

2.0 / 2.5

1.55

40 / 18

parameter	Z	ww	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1390	147	29	5.4
no. bunches/beam	16640	2000	393	48
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.3
SR energy loss / turn [GeV]	0.036	0.34	1.72	9.21

0.1

1281

0.15

8.0

0.27

1.0

3.5 / 12.1

230

68 / >200

- RF design optimised with 3D EM simulations
 - Achieved very good directivity
- Electrode prototyping started with EN/MME
- Purchasing of 400 RF coaxial feedthroughs to be started soon
 - Technical specification ready
- Impedance being validated by WP2

FCCee Layout

An overview of the Beam instrumentation requirements discussed in the CDR

