Energy deposition in FCC-hh EIR

Authors: Barbara Humann (barbara.humann@cern.ch), Maria Ilaria Besana (maria.ilaria.besana@cern.ch)

on behalf of CERN EN-STI-BMI

Special thanks to: C. Kotnig, R. Martin, D. Schörling

FCC-Week 2019, Brussels

25/06/2019

1

Outline

- Triplet
- Mitigation Strategies
- Matching Section
- Conclusion

TRIPLET

25/06/2019

Ene

	(Magn.) Length in m	Aperture in mm	Gradient in T/m	Field in T
TAS	3.0	34	-	-
Q1a, Q1b	14.3	164	126	-
Q2a to Q2d	12.5	164	101	-
Q3a, Q3b	14.3	164	100	-
Correctors	1.3	210	-	0.5/1.9
D1a to D1d	11.3	170	-	2.0
TAN	5.0	52	-	-
D2a to D2d	11.3	85	-	2.0
MCBCRDV/H	3	70	-	2.5

• L*= 40 m

- Crossing angle: 100 µrad
- Up to 490 m from IP
- 35mm Inermet shielding in the quadrupoles and correctors

25/06/2019

Energy Deposition in FCC-hh EIR

4

Horizontal vs Vertical Crossing: Absorbed Power

TAS-C4 Absorbed Power | Ultimate Instantaneous Luminosity 30 cm⁻² s⁻¹

25/06/2019

Horizontal vs Vertical Crossing: Absorbed Power

TAS-C4 Absorbed Power | Ultimate Instantaneous Luminosity 30 cm⁻² s⁻¹

Horizontal vs Vertical Crossing: Absorbed Power

TAS-C4 Absorbed Power | Ultimate Instantaneous Luminosity 30 cm⁻² s⁻¹

Horizontal vs Vertical Crossing: Peak Power Density

Q1-Q3 - Peak Power Density | Ultimate Instantaneous Luminosity 30X10³⁴ cm⁻² s⁻¹

Horizontal vs Vertical Crossing: Integrated Dose

25/06/2019

Energy Deposition in FCC-hh EIR

Horizontal vs Vertical Crossing: Integrated Dose

25/06/2019

Energy Deposition in FCC-hh EIR

DPA (Displacement per atom) in Q1b

Irradiation of superconducting materials leads to displacement of atoms and therefore to deterioration of material critical properties

- DPA ~90% of DPA caused by neutrons
- Thicker shielding is not effective in reducing DPA
- Displacement per Atom:

$$dpa \equiv \frac{A}{VN_A\rho}N_F$$

A: molar mass in g/mol, V: volume in cm³, N_A: Avogadro number in mol⁻¹, ρ : mass density in g/cm³

DPA (Displacement per atom) in Q1b

Irradiation of superconducting materials leads to displacement of atoms and therefore to deterioration of material critical properties

- DPA ~90% of DPA caused by neutrons
- Thicker shielding is not effective in reducing DPA
- Displacement per Atom:

$$dpa \equiv \frac{A}{VN_A\rho}N_F$$

A: molar mass in g/mol, V: volume in cm³, N_A: Avogadro number in mol⁻¹, ρ : mass density in g/cm³

Mitigation Strategy for Q1b (i)

Motivation:

- Reduce heat load in Q1b
- Reduce dose in Q1b
- Reduce DPA in Q1b

	Magn. in	n m i		Aperture Shie in mm in		elding mm	Gradient in T/m	
	old	new	old	new	old	new	old	new
Q1a	14.3	14.3	164	150	35	38	126	139
Q1b	14.3	7.15	164	180	35	47	126	119
Q1c	-	7.15	-	190	-	47	-	111

Changes:

• Split of former Q1b into two magnets (Q1b, Q1c) (Idea of R. Martin)

Q1a Q1b \longrightarrow Q1a Q1b Q1c

- Smaller aperture in Q1a; larger aperture in Q1b, Q1c
- Thicker shielding
 Old → Q1a
 Q1b
 Q1c
 Change in gradients

Mitigation Strategy of Q1b (ii)

Q1 Absorbed Power | Ultimate Instantaneous Luminosity 30 cm⁻² s⁻¹

Absorbed power in cold mass

In kW	Original	Split
Q1a	0.8	1.0
Q1b	2.0	0.7
Q1c	2.0	0.6

Manageable values for cryogenics system (C. Kotnig, https://indico.cern.ch/event/727555/contrib utions/3427601/)

Dose & DPA Q1b split:

Q1 - Integrated dose | Ultimate Integrated Luminosity 30 ab⁻¹

- Slightly higher dose in Q1a, but much lower dose in Q1b and Q1c
- Q1b and Q1c hardly exceed the limit of 30MGy

Note: vertical crossing

25/06/2019

Dose & DPA Q1b split:

Q1 - Integrated dose | Ultimate Integrated Luminosity 30 ab⁻¹

- Slightly higher dose in Q1a, but much lower dose in Q1b and Q1c
- Q1b and Q1c hardly exceed the limit of 30MGy

25/06/2019

Note: vertical crossing

- Higher DPA in Q1a but reduction of DPA in area of former Q1b
- Peak on front face in Q1b in old layout is cured

Energy Deposition in FCC-hh EIR

11

Matching Section

25/06/2019

	(Magn.) Length in m	Aperture in mm	Gradient in T/m	TCL	Length in m	Halfgap in mm
MQT45	1.6	76	-	Q4	1.48	8.1
Q4	9.1	70	33	Q5	1.48	5.8
MCBCV	0.5	66	-	Q6	1.48	1.9
Q5	12.8	60	67	Q7	1.48	1.3
MCBCH	0.5	66	-			
Q6	12.8	60	221			200
Q7a, Q7b	14.3	50	320			

- Q5
- From 490m to 710m after IP
- Straight section
- Two beam pipes with beam separation of • 250mm
- Masks: 2m length, aperture overlapping ٠ with corrector or quadrupole

Q4

CERN

Q6

Sigma

15

15(∨)/16(H)

15

30

	(Magn.) Length in m	Aperture in mm	Gradient in T/m	TCL	Length in m	
MQT45	1.6	76	-	Q4	1.48	
Q4	9.1	70	33	Q5	1.48	
MCBCV	0.5	66	-	Q6	1.48	
Q5	12.8	60	67	Q7	1.48	
MCBCH	0.5	66	-			
Q6	12.8	60	221			
Q7a, Q7b	o 14.3	50	320			

Q7

Q6

From 490m to 710m after IP

- Straight section
- Two beam pipes with beam separation of 250mm
- Masks: 2m length, aperture overlapping with corrector or quadrupole

	(Magn.) Length in m	Aperture in mm	Gradient in T/m	TCL	Length in m	Halfgap in mm
MQT45	1.6	76	-	Q4	1.48	8.1
Q4	9.1	70	33	Q5	1.48	5.8
MCBCV	0.5	66	-	Q6	1.48	1.9
Q5	12.8	60	67	Q7	1.48	1.3
MCBCH	0.5	66	-			
Q6	12.8	60	221			55)
Q7a, Q7b	14.3	50	320			

Q4

25/06/2019

Mask

Collimator

CERN

Q5

Sigma

15

15(∨)/16(H)

15

30

- From 490m to 710m after IP
- Straight section
- Two beam pipes with beam separation of • 250mm
- Masks: 2m length, aperture overlapping ٠ with corrector or quadrupole

	(Magn.) Length in m	Aperture in mm	Gradient in T/m	TCL	Length in m	Halfgap in mm	Sigma
MQT45	1.6	76	-	Q4	1.48	8.1	15
Q4	9.1	70	33	Q5	1.48	5.8	15(∨) /16 (H)
MCBCV	0.5	66	-	Q6	1.48	1.9	15
Q5	12.8	60	67	Q7	1.48	1.3	30
MCBCH	0.5	66	-				
Q6	12.8	60	221				Q7
Q7a, Q7	o 14.3	50	320			Q	6

From 490m to 710m after IP

Q5

- Straight section •
- Two beam pipes with beam separation of • 250mm
- Masks: 2m length, aperture overlapping ٠ with corrector or quadrupole

	(Magn.) Length in m	Aperture in mm	Gradient in T/m	TCL	Length in m	Halfgap in mm	Sigma
MQT45	1.6	76	-	Q4	1.48	8.1	15
Q4	9.1	70	33	Q5	1.48	5.8	15(∨) /16 (H
MCBCV	0.5	66	-	Q6	1.48	1.9	15
Q5	12.8	60	67	 Q7	1.48	1.3	30
MCBCH	0.5	66	-				
Q6	12.8	60	221			200	Q7
Q7a, Q7b	14.3	50	320			Q	6

From 490m to 710m after IP

- Straight section
- Two beam pipes with beam separation of 250mm
- Masks: 2m length, aperture overlapping with corrector or quadrupole

Particle types in the matching section

- Dominated by protons and photons
- More particles with horizontal crossing – TAN is more effective for vertical crossing

Particle types in the matching section

Absorbed Power

Q4-Q7 - Absorbed Power | Ultimate Instantaneous Luminosity 30×10^{34} cm⁻²s⁻¹

Most impacted: collimators (~1-2kW) and masks (~60-100W), but warm. Cold quadrupoles and correctors are in a range up to ~75W absorbed power.

25/06/2019

collimators

2kW more absorbed

in horizontal case -

difference mainly in

15

Peak Power Density & Integrated Dose

Q4-Q7 - Peak Power Density

- Peak power density mostly below 5mW/cm³, except in Q7a (not higher than 8mW/cm³)
- Peak always at front face of the magnets

Peak Power Density & Integrated Dose

Q4-Q7 - Peak Power Density

Q4-Q7 - Integrated dose

- Peak power density mostly below 5mW/cm³, except in Q7a (not higher than 8mW/cm³)
- Peak always at front face of the magnets

- Limit of 30MGy always exceeded
- Shift of critical value, due to change of insulator material?
- Further split of Q7 to reduce integrated dose? Shieling in Q7?

Critical situation in Q7: change half gap or position of collimator

25/06/2019

Conclusion

- Complete study of the triplet and matching section
 - Horizontal and vertical crossing angle scheme
 - Absorbed power, peak power density, integrated dose, DPA
 - Mitigation strategies: combination of crossing schemes (polarity, plane), split of Q1b
- Next steps:
 - Energy deposition studies on the dispersion suppressor
 - Simulation of the incoming beam

Backup Slides

25/06/2019

Horizontal vs Vertical Crossing: Total Power (i)

In kW	Horizo	Horizontal Crossing (APR19)			Vertical Crossing (SEP18)		
Element	Cold Shielding	Cold Mass	Warm Mass	Cold Shielding	Cold Mass	Warm Mass	
TAS			26.8 (±0.4%)			26.5 (±0.9%)	
Q1a	4.6 (±0.4%)	0.7 (±0.3%)		4.6 (±1.1%)	0.78 (±1.2%)		
Q1b	12.3 (±0.4%)	1.69 (±0.3%)		13 (±1.0%)	1.92 (±0.8%)		
C1	0.06 (±1.7%)	0.058 (±1.0%)		0.06 (±4.5%)	0.06 (±2.5%)		
Q2a	1.47 (±1.2%)	0.2 (±0.9%)		1.53 (±3.2%)	0.32 (±2.7%)		
Q2b	0.91 (±1.5%)	0.11 (±1.1%)		0.7 (±4.2%)	0.09 (±3.1%)		
Q2c	6.3 (±0.7%)	0.83 (±0.5%)		4.6 (±2.1%)	0.63 (±1.5%)		
Q2d	7.64 (±0.8%)	0.974 (±0.6%)		5.93 (±2.3%)	0.81 (±1.7%)		
C2	0.714 (±2.0%)	0.076 (±2.2%)		0.51 (±5.1%)	0.05 (±4.5%)		
Q3a	5.07 (±0.9%)	0.632 (±0.7%)		6.02 (±2.2%)	0.77 (±1.6%)		
Q3b	3.97 (±1.1%)	0.41 (±0.9%)		7.8 (±2.3%)	0.95 (±1.7%)		
C3	0.43 (±2.5)	0.04 (±2.2%)		0.94 (±4.5%)	0.17 (±3.8%)		

Horizontal vs Vertical Crossing: Total Power (ii)

In kW	Horizontal Crossing (APR19)	Vertical Crossing (SEP18)
Element	Warm Mass	Warm Mass
D1a	2.0 (±0.9%)	4.99 (±1.7%)
D1b	2.1 (±1.0%)	3.57 (±2.0%)
D1c	2.7 (±0.9%)	3.57 (±2.1%)
D1d	3.8 (±0.7%)	3.96 (±2.1%)
TAXN	110 (±0.2%)	107 (±0.6%)
D2a	0.138 (±2.1%)	0.07 (±10.7%)
D2b	0.064 (±3.2%)	0.01 (±18.5%)
D2c	0.052 (±5.0%)	0.003 (±13.9%)
D2d	0.026 (±6.0%)	0.003 (±14.5%)

Mitigation Strategy: Peak Power Density

Absorbed Power Matching Section

In kW	Vertical Crossi	Vertical Crossing (8kW deposited)		sing (10kW deposited)
Element	Cold M	Beam Interc Dev	Cold M	Beam Interc Dev
Coll Q4		2.89 (±1.0%)		4.62 (±0.9%)
Mask Q4		0.15 (±1.5%)		0.15 (±1.4%)
MQT45	0.019 (±0.7%)		0.02 (±0.8%)	
Q4	0.057 (±0.8%)		0.045 (±0.7%)	
Coll. Q5		1.02 (±1.7%)		1.1 (±2.0%)
Mask Q5		0.16 (±1.8%)		0.11 (±2.5%)
MCBCH	0.002 (±%1.3)		0.002 (±1.6%)	
Q5	0.035 (±0.9%)		0.038 (±1.2%)	
Coll. Q6		1.89 (±1.2%)		2.2 (±1.5%)
Mask Q6		0.087 (±2.3%)		0.074 (±1.8%)
MCBCV	0.003 (±%1.0)		0.003 (±1.3%)	
Q6	0.064 (±%0.7)		0.067 (±0.9%)	
Coll Q7		1.17 (±1.7%)		1.33 (±1.9%)
Mask Q7		0.062 (±2.5%)		0.048 (±2.2%)
Q7A	0.063 (±%1.1)		0.069 (±1.2%)	
Q7B	0.007 (±2.4%)		0.008 (±2.9%)	

25/06/2019

Energy Deposition in FCC-hh EIR

Q7 – Particle analysis

- $\delta_p = 3\% (48.5 \text{ TeV})$
- 82% of all protons are in this range
- Halfgap should be opened to 1 cm (equals 224σ)

- $\delta_p = 0.8\%$ (49.6 TeV)
- 70% of all protons are in this range
- Halfgap at 1.3 mm (equals 30σ)

25/06/2019

Energy Deposition in FCC-hh EIR 24