

STATE ATOMIC ENERGY CORPORATION "ROSATOM"

Development of Internal Tin Strands for FCC Magnets in Russia (TVEL, Bochvar Institute, ChMP)

V.Pantsyrny I. Abdyukhanov

Agreement on R&D CERN-TVEL

CERN proposed Main Objective of the Conductor Development Program in FCC Project

Provide feedback on possibility of **achieving** <u>beyond state-of-the-</u> <u>art HL-LHC Nb₃Sn high-field performance</u> (Jc @ 16 T) to enable design of compact and cost effective 16 T magnets;

Foster Nb₃Sn conductor development in industry and support the industrial development with academic activities (material studies and characterization) in laboratories and institutes world-wide;

Jc at 16 T required to be up to \sim 30% -50 % higher than what achieved on the HL-LHC Nb₃Sn series production

Present cost of high-performance (HL-LHC) Nb₃Sn is > 20 Euro/kA m (4.2 K, 16 T). FCC target is 5 Euro/kA m (4.2 K, 16 T).

This Conference Presentations associated with the Development of Internal Tin Strands for FCC Magnets in Russia

Jc at 16 T required to be up to \sim 30% -50 % higher than what achieved on the HL-LHC Nb₃Sn series production

Characterization of FCC conductors at TU Vienna

<u>M. Eisterer</u>, T. Baumgartner, M. Ortino, J. Bernardi, S. Pfeiffer, A. Moros, M. Stöger-Pollach, M. Sumption, X. Xu, X. Peng, M. Alekseev, A. Tsapleva, P. Lukyanov, I. Abdyukhanov, V. Pantsyrny, B. Bordini, S. Hopkins, A. Ballarino

FCC-hh Nb₃Sn wire development: superconducting and magnetic properties of prototype samples

<u>Mattia Ortino¹</u>, Alice Moros², Stefan Löffler², Maxim Alekseev³, Anastasia Tsapleva³, Pavel Lukyanov³, Ildar M. Abdyukhanov³, Victor Pantsyrny³, Bernardo Bordini⁴, Amalia Ballarino⁴, Simon C. Hopkins⁴, Michael Stöger-Pollach², Johannes Bernardi², Michael Eisterer¹.

AC magnetometry - in the range of temperature from 5 to 19 K; Magnetic moment of wire sample as a function of temperature - M(T) curve for assessing T_c distribution.

Scanning Hall Probe Microscopy (SHPM) - in the range of temperature from 5 to 19 K; Magnetization maps of individual sub-elements and clusters,

Development targets – Nb₃Sn

(starting with a 4 years program)

TVEL

A. Ballarino, CERN

Wire diameter	mm	~ 1	-
Non-Cu Jc (16 T, 4.2	K)* A/mm ²	≥ 1500	Focus TODAY is on Jc
μοΔ Μ(1 Τ, 4.2 K)	mT	≤ 150	_
Deff	μm	≤ 20	- < 50
RRR	-	≥ 150	= ≤ 50
Unit length	km	≥ 5	
Cost	Euro/kA m*	** ≤5	= ≥0.1
*Cu:non Cu ~ 1	400		
** 16 T, 4.2 K	300	Process shall enak	ole scalability
Deff ~ 50 μm could be Attained with 80-120	200 150 100	for large producti	on
subelements	50 0 1644 974 694 544 444 274 224 284 264 224 2	-	

Starting point - 2017 design of IT strand produced commercially

Distributed barrier

Falameter	
Strand diameter, mm	1,00
Cu/nonCu	1,20
Nb fraction within barrier, %vol	≈ 42%
Nb_3Sn fraction in non Cu area after HT, %. vol.	54%
D subelement, μm	113
Subelement spasing, µm	11
D filament, μm	4,9
Cu thinckness between Nb filaments, µm	0,6
Ti doping, at %	1,4
The last stage of HT	665°C/40h
J _c (12T; 4,2K) A/mm²	2654
D eff (±3T), μm	134

12 km of strands have been produced in industry ChMP Plant and supplied to CERN

Strands 2018 design with filaments doped by Ti, Ta

Strands 20 (Ti+Ta)

FCC week Brussels

Ways to target ~ 30% - 50 % higher Jc at 16 T

- 1) Quantity of Nb₃Sn phase:
 - <u>Barriers</u> number of subelements thickness of the barriers Nb₃Sn formation on the barrier amount of deformation = variation in thickness of the barrier
 - Filaments «monofilament» or strongly bridged filament with inclusion of copper
- 2) Quality of Nb_3Sn phase:
 - Doping of the Nb filaments with objective to change the physical parameters of Nb₃Sn phase (Bc2 and Tc). Doping of the Cu matrix and Sn alloy
 - Composite filaments with possibility to change the mechanism of Nb₃Sn phase formation not only changing the physical parameters of Nb₃Sn phase (Bc2 and Tc), but the morphology of the Nb₃Sn layer and size of grains
 - Heat Treatment Regimes (For IT strands much more influential than for Bronze strands). Have to be interrelated with the Doping.

First stage of Heat treatment in IT strands

Heat Treatment in the presence of liquid phase on the first stage

Cryogenics 48 (2008) 293–307 R. Flükiger

Microstructure of the subelements after the first stage (low temperature) annealing

330°C, 100 h

410°C, 100 h

$d = \sqrt{2D\tau}$

Characteristic dimension (diffusion pass is 20-μ (20 *10 ⁻⁴ cm)

Characteristic time is 100-150 hours therefore equal to 5 * 10⁵ sec

Therefore characteristic coefficient of diffusion reaction is equal to $4 \times 10^{-12} \text{ cm}^2/\text{sec}$ Taking into account the presence of liquid phase – the process of homogeneization of Sn – Cu component of the strand on the first stage of Heat Treatment (before Nb3Sn formation) could not be limitation factor.

The reaction is started as a combination of the sold state diffusion in the central areas of filaments and reaction with prevailing of liquid phase presense in peripherical areas of macrofilaments. FCC week Brussels 9

Distribution of elements in Ti and Ti+Ta doped Nb₃Sn strands

(Ti)

Uniform distribution of Sn, Ti and Ta in Nb₃Sn layers after reaction heat treatment

SEM investigation: distributed Nb

T4

Cu Cu-Sn Areas of Nb₃Sn phase with low current carrying ability. Here is the reserve for Jc increase

Microstructure of the Nb3Sn layer after heat treatment: 370°С, 100ч+665°С, 40ч

Average grain size 120 nm

Doped by Ti+Ta

Average grain size 124 nm

Areas of Nb₃Sn phase with low current carrying ability. Here is the reserve for Jc increase

Homogeneity analysis: composition gradients

Nb_3Sn TVEL samples

EASITrain

Superconducting properties of the strands

Superconducting properties of the strands

Пилот 20 (Ті+Та)

РТО	В _{с2} , Тл	В _{Fp max} , Тл
	Ø1 мм	
665°С, 100 ч	25,1	7
665°С, 60 ч	24,4	7
665°С, 40 ч	23,7	7
680°С, 40 ч	25,2	7
700°С, 40 ч	25,3	7
720°С, 40 ч	25,5	7

Пилот 18 (Ti)

Industrial production of IT strands at ChMP (*Capacity* ≥ 60 tons per year)

Industrial production of IT strands (not only at ChMP)

Present cost of high-performance (HL-LHC) Nb₃Sn is > 20 Euro/kA m (4.2 K, 16 T). FCC target is 5 Euro/kA m (4.2 K, 16 T).

If the first objective is attained and the Jc non Cu (16 T 4.2K) = 1500 A/mm2 than the cost of production (5 Euro/kA m) should be diminished in a factor of 2.6 But technology of IT strands production has started in 1974 (Hashimoto – Japan and Bochvar Institute indendable) - 45 yers ago. Therefore it is a challenging task for Industry.

SUMMARY

- The last year progress on the road to the FCC target strand was associated mainly with the optimization of the design enabled to attain Jc (non Cu = 2850 A/mm² (12 T, 4.2K) and 1100 A/mm² (16 T, 4.2K)
- 2) The further increase of Jc is potentially possible by the eliminating of the Sn concentration gradient across the Nb₃Sn layers altogether with the approaching to the stoichiometry
- 3) Industrial production of the first batches confirms the scalability of the laboratory designed fabrication routes;
- 4) The way to all FCC targets (Jc, Deff, RRR, Cost) requires the necessity to handle the industrial scaled billets.