FCC WEEK 2019

Material properties of
relevance to cryogenic
vacuum systems

Luisa Spallino, LNF-INFN

INFN
Brussels, 26t July 2019 |

Istituto Nazionale di Fisica Nucleare




Work Package 4: Cryogenic beam
vacuum system

Fur::CirCol

A key to New Physics

Task 4.4 Study vacuum stability at
cryogenic temperature

Research funded by EuroCirCol project
(Grant No. 654305) and supported by
MICA project funded by INFN-SNC5

FCC WEEK 2019, 26/7/2019 L. Spallino, LNF-INFN 2




59 Outline

 [ntroduction
« Strategy and experimental set-up at LNF

* Results
o TPD from LASE-Cu for temperature induced vacuum transients study
o Electron desorption studies: preliminary results

FCC WEEK 2019, 26/7/2019 L. Spallino, LNF-INFN




FUNCTION

1. Increase the collider’s cooling
efficiency

2. Avoid development of
transverse resistive wall instability

3. Resist eddy-current forces
during magnet quench

6. Preserve magnetic field quality

5. Avoid development of e-cloud

4. Keep the gas density low

Updated from P. Lebrun et al.
ICEC 2012
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Introduction

PROCESS DESIGN FEATURE

Limit heat load on the 1.9 K cold Beam screen held at 40 K -
mass from all sources 60 K

Low-conduction support

Limit resistive wall impedance
sets

Highly resistive, structural

. P506 steel
material

Low permeability materials Double chamber layout

LASE treatment on inner

Low SEY surfaces
chamber

Sawtooth treatment on
secondary chamber

Limit synchrotron radiation
scattering

Maximize pumping speed — Pumping holes

cooling channels

FCC-hh BS

sawtooth

N perforated
surface finishing

baffles

LASE-Cu
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Introduction

cooling channels

FUNCTION PROCESS DESIGN FEATURE
1. Increase the collider’s cooling Limit heat load on the 1.9 K cold Beam screen held at 40 K - FCC_ h h BS
efficiency mass from all sources 60 K

2. Avoid development of Low-conduction support

— Limit resistive wall impedance

transverse resistive wall instability sets
3. Re5|.st eddy-current forces Highly reS|st|ve., structural P506 steel
during magnet quench material
6. Preserve magnetic field quality —  Low permeability materials 4 Double chamber layout

LASE treatment on inner
chamber

5. Avoid development of e-cloud v Low SEY surfaces

LASE-Cu

Limit synchrotron radiation ~ / Sawtooth treatment on
scattering secondary chamber

4. Keep the gas density low

sawtooth
surface finishing

Updated from P. Lebrun et al.
ICEC 2012

perforated
baffles

Maximize pumping speed — Pumping holes
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E Introduction

Engineering the surface morphology R. Valizadeh et al. , Appl. Phys. Lett. (2014)
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LASE-Cu to mitigate e-cloud effects
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" Introduction

il

Dipole cold bore at 1.9 K

Cooling tubes ; . . . .
in 3 asmm O I e Not only intrinsic properties of surface but
Dia. 46,4485 also the effects of:

> Photons-surface interaction

stripes pumping

ﬂ Photons
<

36.8 mm

Desorbed
molecules

> Electrons-surface interaction

» Temperature transients
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Independently on the substrate treatment, the vacuum stability due to the

desorption of residual contaminant gases has to be guaranteed
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@ Introduction

Engineering the surface morphology

What about the influence of the surface
features on vacuum stability?
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R. Valizadeh et al. , Appl. Surf. Sci. (2017)
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§EQ/ Strategy and experimental set-up at LNF

Low Temperature ——>  Temperature variations/photons/electrons

| |

Gas Adsorption Gas Desorption
SEY variation Pressure variation

SEY, Mass Spectrometry, Thermal Programmed Desorption (TPD) and XPS (soon)
as useful techniques to quantitatively follow adsorption/desorption kinetics
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§§ Strategy and experimental set-up at LNF

Ultra high vacuum systems

preparation Secondary Electron Yield (SEY)

jrehamher measurements i ¢
Equipment : Electron gun, Faraday cup =y

main chamber fast-entry lock

. LNF-cryogenic
manipulator S P N
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E

. Sample at 15-300 K REY

Temperature Programmed Desorption
(TPD) and Mass Spectrometry
measurements

Equipment : QMS (Hiden HAL 101 Pic)
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57 TPD from LASE-Cu for temperature
% &J/ ] ]
% : Induced vacuum transients study

(a) (b)

Comparative study of TPD from flat
poly-Cu and LASE-Cu samples
using different gases
(Ar, CH,, COand H,)
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TPD from LASE-Cu for temperature
Induced vacuum transients study: Ar

Single TPD peak at ~30 K corresponding to the
desorption of a condensed thick Ar layer

<€
Ar on poly-Cu

Desorption temperature determined by the weak Ar-Ar
van der Waals interaction energies

L. Spallino, M. Angelucci, R. Larciprete, R.
Cimino,
Appl. Phys. Lett. 114, 153103 (2019)
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TPD from LASE-Cu for temperature
Induced vacuum transients study: Ar
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%f TPD from LASE-Cu for temperature
4 Induced vacuum transients study: Ar
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TPD characteristics determined by the
sponge-like structural features of LASE-Cu
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TPD from LASE-Cu for temperature
Induced vacuum transients study: CH,
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Conceptually identical to Ar results

L. Spallino, M. Angelucci and R. Cimino, to be published
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TPD from LASE-Cu for temperature
Induced vacuum transients study: CO
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Conceptually identical to Ar results

L. Spallino, M. Angelucci and R. Cimino, to be published
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&ﬁz TPD from LASE-Cu for temperature
‘Q Induced vacuum transients study: H,
TPD of 100 L H, dosed on poly-Cu ‘o poly-Cu —— LASE-Cu
and samples held at o
T~15-18 K s
DE 0.8 1
No TPD signal should be observed =
by considering the H, vapor suture :
pressure curve!!! 3 g
The wide distribution of high energy a
adsorption sites within the inner pore is S A A A A S A Y
responsible for the H, TPD signal from T (K)
LASE-Cu sample Conceptually identical to Ar results

L. Spallino, M. Angelucci and R. Cimino, to be published
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@%m TPD from LASE-Cu for temperature

A

ad induced vacuum transients study
Saturated vapour pressure from Honig and Hook (1960)
e CO Vap. Press. Curve =====25L CO on LASE-Cu TPD Curve L. Spallino, M. Angelucci and
«==CH, Vap. Press. Curve ====25L CH, on LASE-Cu TPD Curve R. Cimino, to be published

Further studies on this issue
and on electron/photon
stimulated desorption at low
T are necessary to completely
validate/optimize LASE-Cu.

Pressure (mbar)
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The concept of the study:

SEY measurement of a condensed
gas layer induces electron
desorption

SEY

200 400 600 800 1000
Primary Energy (eV)

L. Spallino, M. Angelucci and R. Cimino, to be published

FCC WEEK 2019, 26/7/2019 L. Spallino, LNF-INFN 21




&
W

& @

The mass spectrum shows the
sign of such electron desorption

3.0+

Electron desorption studies: preliminary results
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