

Characterization of FCC conductors at TU Vienna

M. Eisterer, T. Baumgartner, M. Ortino, J. Bernardi,

S. Pfeiffer, A. Moros, M. Stöger-Pollach, M. Sumption,

X. Xu, X. Peng, M. Alekseev, A. Tsapleva, P. Lukyanov,

I. Abdyukhanov, V. Pantsyrny, B. Bordini, S. C. Hopkins,

A. Ballarino

Outline

- Motivation
- Inhomogeneities
 - Prospects
 - Commercial wires
 - Prototype wires
- Artificial pinning
 - Neutron irradiation
 - Ternary APC wires (internal oxidation)

Motivation

FCC-hh requirements Performance increase of about 50% (1500 A/mm² (nonCu) @ 16 T)

How to achieve?

- Reduction of inhomogeneities (e.g. Sn-gradients)
- Introduction of artificial pinning centers/grain refinement

Support conductor development Advanced characterization of microstructure (TEM, SEM) and superconducting properties. Comparison of the local properties.

INHOMOGENEITIES

Prospects

- Nb₃Sn is formed during heat treatment by a diffusion reaction
- In modern wires a Sn source diffuses outwards into a region containing densely stacked Nb filaments (RRP) or a Nb tube (PIT)
- Consequently, a radial gradient in stoichiometry is always present

Quantitative modelling proposed in T. Baumgartner et al., SUST 31 (2018) 084002

Y. Li, Y. Gao, Sci. Rep. 7 (2017) 1133

Courtesy of T. Baumgartner

Sn gradients (assessment)

Directly by SEM: EDX Magnetic measurements (AC, SHPM): Flux penetration near T_c

T. Baumgartner et al., SUST 30 (2017) 014011

Sn gradients (some results)

Sn gradients (TVEL wires)

Ta-alloyed Nb₃Sn

"Standard" sample BARRIER CENTER24 23 Sn content [at. %] 19 *Slope*: 0.83 ± 0.12 18 | 0.0 0.2 Rel. position

Sample with clusters

1.0

0.8

0.6

0.2

TVEL wires

Field profile in Meissner state

Ta-alloyed Nb₃Sn

Remanent field

Interfilament coupling?

120

150

180

PIT

60

90

 $x (\mu m)$

Reaching the FCC specifications

ARTIFICIAL PINNING

Artificial Pinning Centers (APC)

Neutron irradiation

Internal oxidation

Wire made by Hyper Tech and heat-treated at Fermilab

Formation of ZrO₂ nanoparticles

Grain Refinement

(Data obtained from TKD)

Artificial Pinning Centers (APC)

Neutron irradiation

T. Baumgartner et al., SUST 27 (2014) 015005

Internal oxidation

X. Xu et al. Adv. Mat. 27 (2015) 1346

Similar behavior despite differences in microstructure.

Outlook

- Understanding pinning in Nb₃Sn wires
- Advanced characterization to foster wire development
- Assessment of local currents by scanning Hall probe microscopy
- Correlation with local microstructure (e.g. Sn-content) assessed by TEM

