Advanced design study of superconducting septum magnet for FCC

K. Sugita, E. Fischer, P. Spiller, GSI
M. Atanasov, J. Borburgh, CERN
A. Sanz Ull, Eindhoven Technical University
FCC-hh extraction

- FCC-hh extraction septum system (from CDR)
 - two stage single-plane extraction
 - superconducting shield septum (Sushi)
 - septum thickness 20 mm, 3 T, 10 m long
 - truncated cosine-theta septa
 - septum thickness 30 mm, 4T, 40 m long

Courtesy of Elisabeth Renner
FCC septum geometry

Injection
1.3 TeV, 3.3 TeV

- superconducting coil
- mechanical support
- cooling
- beam pipe

(25~)30 mm
19 mm
(36.5~)41.5 mm
23 mm

32 mm
25 mm

4 T

34 mm
43 mm
64 mm
49 mm
Why GSI needs high field septa?

- FAIR accelerator complex – *under construction*

GSI accelerator facility

Fair accelerator facility

Status

- **SIS100**
 - dipole magnets
 - produced > 50/108
 - tested > 30/108
 - quadrupole doublet modules
 - First-of-Series under assembly

- **Super-FRS**
 - multiplet
 - First-of-Series under testing
 - dipole
 - First-of-Series Q1 2020

Future SIS”X”00 (X≥3)

- Beam rigidity X times higher
- Building is fixed, same as SIS100
- SIS100 with ~ 1.0 Tesla septum
 - ➞ septum magnet $X \ T \geq 3.0 \ T$
Dipole magnet

- Iron-dominated (Window-frame) Magnet
- Current dominated, cosine-theta Magnet
- More than ~ 2 Tesla

Septum magnet

- B = 0
- Truncated cosine theta (with iron yoke)
analytical computation

• Useful for "first step" of design
 • necessary ampere*turns
 • define Rc/Ry ratio
 • current density estimation
 • septum < cosine-theta
 • number of cables
 • in cosine-theta aperture
 • between iron yoke and cosine-theta

\[j = -j_0 \cos \theta \]

\[B_0 = \frac{\mu_0 j_0}{2} \left(\frac{R_c}{y^2} + \frac{R_c}{R_y^2} \right) \]

\[B_1 = \frac{\mu_0 j_0}{2} \left(\frac{1}{R_c} + \frac{R_c}{R_y^2} \right) \]

\[j_i = \frac{j_0}{2} \left(\frac{1}{R_c} + \frac{R_c}{R_y^2} \right) \]
cross section design

- **How to design**
 - make full dipole magnet cross section
 - peak field of iron yoke < ~ 2T (no saturation is preferable)
 - keep only one side of full cosine-theta coil, introduce a septum coil
 - in the coil radius, the septum coil cables are constantly arranged
 - out side, the distance increases
 - septum coil must be arranged in the aperture of the yoke
 - no magnetic material (shielding) at the circulating beam side
coil end design

- Complex!
 - two stage coil end
 - symmetric cosine-theta cold end
 - lift-up the cables in positions

Nuclotron cable
(fast ramp, high heat load)

Surface winding
(Medical accelerator)
coil end design

- cosine-theta coil can be simplified
 - lower requirement for the field quality w.r.t. the magnets in the ring
 - saddle shape, block coil near mid-plane
 - racetrack coils, near pole

Preliminary design with flat cable (no keystone angle)

\[R_{\text{ref}} = 11.5 \text{ mm} \]
\[b_2, b_3, b_4 = \text{several unit} \left(10^{-4}\right) \]
coil end design

Racetrack coil

Saddle coil

Extracted beam
summary

* achievement
 ✓ truncated cosine-theta concept developed
 ✓ theoretical studies
 ✓ know-how of 2D electromagnetic design
 ✓ 2D optimisation with software (Roxie)
 ● target: 4 T septum, NbTi cable, 30 mm septum thickness
 ✓ preliminary mechanical analysis (2018)
 ✓ various coil end designs are proposed

* further R&D work
 ● mechanical and cryogenic design studies
 ● iteration of electromagnetic design and engineering design
 ● prototyping

* collaborations
 ● general CERN–GSI collaboration meeting (2nd July)
 ● discussion, suggestion, collaboration proposal are very welcome!
Thank you very much!