REBa$_2$Cu$_3$O$_7$ coated conductors as a beam screen coating: Linking surface resistance to microstructure

A. Romanov1, J. Gutierrez1, P. Krkotic2, J. O’Callaghan3, F. Perez2, M. Pont2, X. Granados1, S. Calatroni4, M. Taborelli4 and T. Puig1

1 Institut de Ciència de Materials de Barcelona, CSIC, Bellaterra (Spain)
2 ALBA Synchrotron Light source, Cerdanyola del Vallés (Spain)
3 Universitat Politècnica de Catalunya, Barcelona (Spain)
4 CERN - The European Organization for Nuclear Research, Geneva (Switzerland)
Outline

1. REBCO CCs for beam screen coating
2. Linking CC’s surface resistance to microstructure
3. Evaluation of secondary electron yield
1. **Motivation:** *REBCO CCs for beam screen coating*

Synchrotron radiation in FCC much higher:
- $P_{beam}^{LHC} \approx 0.2 \text{ W/m}$
- $P_{beam}^{FCC} \approx 35.4 \text{ W/m}$

Limit the cryogenic load to 100 MW

$\Delta T_{FCC} = 40 - 60K$

Superconductors belong to only material class where $R_{S}^{SC} < R_{S}^{Cu}$

Cu may not provide low enough surface impedance at 40-60K

26.06.2019
1. Motivation: **REBCO CCs for beam screen coating**

REBCO coated conductors are layered structures consisting of:

- **Multifunctional oxides**
 - HTS REBa$_2$Cu$_3$O$_{7-x}$
 - Buffers that allow epitaxial growth

- **Flexible, metallic substrate**

Superconductive at FCC conditions:

\[T_c \approx 93K \quad B_{c2}(50K) \approx 80T \quad I_c(50K, 16T) > 25A \]

Commerially available in km length (≈5000 km/a).

Participating manufacturers in FCC study:

- **Rare earth**
 - Y
 - Gd
 - Eu
 - Dy
 - ...

Intrinsic PC

- Grain boundaries
- Secondary phases
- Stacking faults
- Point defects
- ...

Artificial PC

- BaZrO$_3$
- BaHaO$_3$
- ...

26.06.2019
Outline

1. REBCO CCs for beam screen coating
2. Linking CC’s surface resistance to microstructure
3. Evaluation of secondary electron yield
2. Linking R_S to microstructure

- Within the consortium, ALBA and UPC developed 8 GHz cavity dielectric resonator
- compatible with 25mm bore 9 T magnet at ICMAB

State of the art REBCO CCs outperform Cu at 50K, 8 GHz and up to 9T
2. Linking R_s to microstructure

State of the art REBCO CCs outperform Cu at 50K, 8 GHz and up to 9T

R_s is microstructure dependent

$T = 50K, \nu \approx 8GHz$

FCC Cu (300µm on st.st.)

Microstructure of YBCO with BZO nanorods

T. Puig et al. (SUST accepted)
2. Linking R_s to microstructure

Classical rigid-fluxon model

S. Calatroni and R. Vaglio, IEEE Transactions on Applied Superconductivity 27, 2017

Assumptions:
1. Fluxon shape cannot be deformed
2. Rigid flux tube lattice

Equation of motion for fluxons:

$$m\ddot{x} + \eta \dot{x} + kx = J_{rf} \Phi_0$$

Surface resistance:

$$R_{fl}(T, H, \nu) = R_n \sqrt{a^2(J_c, \rho, B_{c2}) + b^2(J_c, \rho, B_{c2}) - b(J_c, \rho, B_{c2})}$$

Depinning frequency:

$$\nu_0 = \rho_n \frac{J_c}{B_{c2}} \sqrt{\frac{H}{\phi_0}}$$
2. Linking R_S to microstructure

Overestimation of R_S with rigid-fluxon model:

$$R_{fl}(T, H, \nu) = R_n \sqrt{a^2(J_c, \rho, B_{c2}) + b^2(J_c, \rho, B_{c2}) - b(J_c, \rho, B_{c2})}$$

Introduction of correction factor r:

$$R_{fl}(T, H, \nu) / r$$

$T = 50K$, $\nu \approx 8GHz$

Correction factor $r = 8.0$

Calculated from transport values

Measured with resonator
2. Linking R_s to microstructure

Correction factor r depends on the microstructure of CC

$T = 50K, \nu \approx 8GHz$

- $r_{SuNAM} = 5.4$
- $r_{Super0x} = 7.7$
- $r_{Bruker} = 8$
- $r_{Theva} = 24$
- $r_{Fujikura} = 10$
- $r_{SuperPower} = 11.5$
- $r_{Fujikura\ NP} = 30$
2. Linking R_s to microstructure

Underestimation of ν_0 compared to literature $\nu_0^{lit}(50K) \geq 15GHz$.

2. Linking R_s to microstructure

Ignore the depinning frequency derived from rigid-fluxon model:

$$\nu_0 = \frac{\rho n J_c B_{c2}}{\phi_0}$$

→ Use ν_0 as fitting parameter.

Fitted value $\nu_0 \approx 29 \text{ GHz}$:

1. No correction factor needed
2. Matches better with literature
2. Linking R_s to microstructure

$T = 50K, \nu \approx 8GHz$

$\nu_0^{\text{rigid-fluxon}} = \rho_n \frac{J_c}{Bc2} \sqrt{\frac{H}{\phi_0}}$ identified as weakness of model \rightarrow Gives potential to adjust model.

<table>
<thead>
<tr>
<th>Provider</th>
<th>$\nu_0^{\text{rigid-fluxon}}$ (9T) in GHz</th>
<th>$\nu_0^{\text{fit rigid-fluxon}}$ in GHz</th>
<th>$\nu_0^{\text{CoffeyClem}}$ in GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruker</td>
<td>3.0</td>
<td>29.3</td>
<td>30.0</td>
</tr>
<tr>
<td>SuNAM</td>
<td>0.9</td>
<td>19.6</td>
<td>19.0</td>
</tr>
<tr>
<td>SuperOx</td>
<td>0.8</td>
<td>25.1</td>
<td>24.5</td>
</tr>
<tr>
<td>SuperPower</td>
<td>1.2</td>
<td>35.4</td>
<td>35.2</td>
</tr>
<tr>
<td>Theva</td>
<td>3.1</td>
<td>60.4</td>
<td>57.0</td>
</tr>
<tr>
<td>Fujikura</td>
<td>3.3</td>
<td>33.9</td>
<td>34.2</td>
</tr>
<tr>
<td>Fujikura NP</td>
<td>1.3</td>
<td>67.8</td>
<td>71.0</td>
</tr>
</tbody>
</table>
2. Linking R_s to microstructure

Extrapolation of R_s using rigid-fluxon model with $v_0^{\text{fit rigid-fluxon}}$ to 1GHz and 16T:

$T = 50K, \nu = 1 \text{ GHz}$

FCC Cu (300μm on st.st.)

Predicted by rigid-fluxon model: Out performance of Cu by HTS CC at FCC conditions even more pronounced!
Outline

1. REBCO CCs for beam screen coating

2. Linking CC’s surface resistance to microstructure

3. Evaluation of secondary electron yield
3. Beam instability: Secondary electron yield

- In untreated form not suitable for use in particle accelerators
- Conditioning treatment not sufficient
- Roughness of a-C decreases SEY under desired limit
- Ti as adhesion and protection layer

Thin layers of a-C and Ti decrease the SEY below threshold value 1.3.
3. Beam instability: Secondary electron yield

Increase of R_s for 150 nm Ti + 100 nm a-C not detrimental.
Conclusions

- State of the art REBCO CCs outperform Cu at 50K, 8 GHz and up to 9T

- Extraction of ν_0 as for all CCs by means of ridig-fluxon model

- Extrapolation of surface resistance to FCC conditions 1 GHz, 16 T, 50K \rightarrow outperformance of Cu by CCs by two order of magnitude expected at FCC conditions

- a-C (50-100 nm) and Ti (100-150 nm) capping to reduce the secondary electron yield below required limit $\delta_{\text{lim}} \approx 1.3$

- Increase in R_s due to capping is not significant at 50K, 8GHz, up to 9T
Outlook: REBa$_2$Cu$_3$O$_7$ coated conductors for beam screen coating

1. Characterization of CCs up to 16T:

- Cylindrical dielectric resonator $\nu \approx 8$ GHz
- Resonator configuration with $\nu \approx 1$GHz (currently in development at UPC/ALBA)

Surface impedance Z_s measurable at FCC conditions.
- $\nu = 1$ GHz, 8GHz
- Wide Temp. range
- Up to 16 T

\rightarrow Understanding the influence of magnetic field on vortex dynamics up to 16T.

2. Evaluation of persistent currents

- Analyzing persistent currents will define the required aspect ratio of Cu and REBCO CC in beam screen
- Construction of proof-of-concept device based on generated knowledge

3. Welding solutions of aC/REBCO/Steel stacks

- Soldering of REBCO CCs to st. st. with delamination of superconducting layer possible in large scales
- Delaminated bottom layer shows no degradation in R_s performance
- Superconducting performance of delaminated layers still to be investigated

4. Mechanical tests of aC/REBCO/Steel stacks

- Experimental system to assess 2D /3D stress maps based in optical image correlation with in situ monitoring the I_c has been finished and will be taken into operation in Q3/Q4 2019
- Full evaluation of stresses associated to new welding solution targeted
The authors acknowledge the support and samples provided by Bruker, Fujikura, Sunam, SuperOx, SuperPower and Theva. Authors acknowledge CERN funding FCC-GOV-CC0073/1724666/KE3359, MAT2014-51778-C2 COACHSUPENERGY, 2017-SGR 1519 from Generalitat de Catalunya and COST Action NANOCOHYBRI (CA16218). ICMAB authors acknowledge the Center of Excellence award Severo Ochoa SEV2015-0496 and its Future Interdisciplinary Projects action.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 754397”.

Financial support from the Spanish Ministry of Science, Innovation and Universities, through the “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0496)
Thank you for your attention!