

RF Characterisation of HTS-CC Tapes as Alternative Coating for the FCC-hh Beam Screen

Patrick Krkotić^{1,2}, Joan O'Callaghan², Montse Pont¹, Francis Perez¹ Artur Romanov³, Joffre Gutierrez³, Teresa Puig³

Index

Beam Screen Design	FCC – hh
	Coated Conductor Coating
	Requirements
Experimental Setup	Dielectric Resonator
	Surface Resistance
	Surface Current Density
	Surface Reactance
Conclusion and Outlook	Summary

Beam Screen Design FCC-hh Coated Conductor Coating

- Nominal aperture:
 - H: 28.37 mm
 - V: 24.4 mm
- Slit height:
 - 7.5 mm
- Beam screen:
 - 1.0 mm steel
 - 0.3 mm copper
- Operating temperature
 - 50 ± 10 K

Coated Conductor Coating

- HTS coated conductor stripes
 - commercially available 2 12 mm
- Display on several chosen positions
 - e.g. alternating CC and Cu
 - lower ac losses
- Covered with amorphous Carbon to reduce SEY
- Reducing beam coupling impedance
 - low surface resistance

^[2] Patrick Krkotić et al.

Coated Conductor Coating

- HTS coated conductor stripes
 - commercially available 2 12 mm
- Display on several chosen positions
 - e.g. gradually increasing tapes
 - lower ac losses
- Covered with amorphous Carbon to reduce SEY
- Reducing beam coupling impedance
 - low surface resistance

25/06/2019

[2] Patrick Krkotić et al.

Coated Conductor Coating

- HTS coated conductor stripes
 - commercially available 2 12 mm
- Display on several chosen positions
 - e.g. double track
 - lower ac losses
- Covered with amorphous Carbon to reduce SEY
- Reducing beam coupling impedance
 - low surface resistance

[2] Patrick Krkotić et al.

Requirements

- Operating temperature:
 - 50 ± 10 K
- Magnetic field strength:
 - 1 16 T
- Emitted synchrotron radiation:
 - 35.4 W/m/beam
- Beam spectrum frequency:
 - up to 3 GHz
- Image current per bunch:
 - 25 A -> J_C = 25 kA/cm² <u>Poster Session - Joffre Gutierrez Royo,</u> <u>'Coating the FCC-hh beam screen chamber with</u> <u>REBa2Cu307-x coated conductors'</u>

Experimental Setup

Dielectric Resonator

(compatible with a PPMS system)

Dielectric Resonator

Surface Resistance

- Shielded Hakki-Coleman type
- Samples replace upper and lower plates
- Operating in the TE₀₁₁ mode
 - insensitive to electrical contact of the sample with the metallic enclosure
 - resonance frequency at 50 K is 7.9 GHz
- Surface Resistance is defined as

$$R_{S} = \frac{G_{S}}{2} \left(\frac{1}{Q_{0}} - p \cdot \tan(\delta) \right)$$

 $R_S = Surface resistance$ $G_S = Geometrical factor$

 $p = Filling \ factor$ $\tan(\delta) = Loss \ factor$

Dielectric Resonator

Surface Resistance

We proved that close to FCC conditions (40-60 K, 8 GHz, 0-9 T), HTS surface resistance is lower than that of copper for most manufacturers.

FCC Week 2019

Magnetic Field Amplitude

- Estimated value of the magnetic rf field for the FCC
 - $H_{max} = 250 \text{ A/m} (0.3 \text{ mT})$
- Magnetic field amplitude:
 - $A \propto \sqrt{\frac{Q_0 P_{diss}}{\omega_0}}$
- $Q_0 = Quality \ factor$ $P_{diss} = Power \ dissipated$ $\omega_0 = Resonant \ frequency$
- Experimental set-up and losses

Analytical estimation of the distribution of rf magnetic field strength on a sample in the DR

Magnetic Field Amplitude

- Estimated value of the magnetic rf field for the FCC
 - $H_{max} = 250 \text{ A/m} (0.3 \text{ mT})$
- Magnetic field amplitude:

 $Q_0 = Quality \ factor$ $P_{diss} = Power \ dissipated$ $\omega_0 = Resonant \ frequency$

Sample	<i>H_{max}</i> (50 К,0Т)	<i>Н_{тах}</i> (50 к,9т)
SuperPower	29 A/m	7 A/m
SuperOx	13 A/m	4 A/m

Analytical estimation of the distribution of rf magnetic field strength on a sample in the DR

Magnetic Field Amplitude

- Estimated value of the magnetic rf field for the FCC
 - $H_{max} = 250 \text{ A/m} (0.3 \text{ mT})$
- Magnetic field amplitude:
 - $A \propto \sqrt{\frac{Q_0 P_{diss}}{\omega_0}}$
- $Q_0 = Quality \ factor$ $P_{diss} = Power \ dissipated$ $\omega_0 = Resonant \ frequency$
- Experimental set-up and losses

Analytical estimation of the distribution of rf magnetic field strength on a sample in the DR

Power

- Estimated value of the magnetic rf field for the FCC
 - $H_{max} = 250 \text{ A/m} (0.3 \text{ mT})$
- Magnetic field amplitude:
 - $A \propto \sqrt{\frac{Q_0 P_{diss}}{\omega_0}}$

 $Q_0 = Quality \ factor$ $P_{diss} = Power \ dissipated$ $\omega_0 = Resonant \ frequency$

Experimental set-up and losses

Thermal Runaway – R. Vaglio & S. Calatroni

 Transversal thermal resistance is the sum of individual thermal resistances

Thermal Runaway – R. Vaglio & S. Calatroni

[4] Ruggero Vaglio et al.

 Transversal thermal resistance is the sum of individual thermal resistances

Linear relationship

$$R_{S}(f,T) = \frac{T - T_0}{R_T} \frac{R_{n_{Cu}}}{P_{rf_{Cu}}}$$

 $R_S = R_n = Surface resistance$ $R_T = Thermal resistance$ $P_{rf} = RF$ power dissipated

Magnetic Field

 A perturbation in temperature or/and magnetic field produces a relative change in resonant frequency according to

$$-2\frac{\Delta f_0}{f_0} = \frac{\Delta X_S}{G_S} + \frac{\Delta X_m}{G_m} + p\frac{\Delta \varepsilon_r}{\varepsilon_r}$$

[5] Pompeo et al.

 $f_0 = Resonant frequency$ $X_S = Surface reactance of SC$ $X_m = Surface \ reactance \ of \ Brass$ $\varepsilon_r = Permittivity \ of \ dielectric$

Magnetic Field

 A perturbation in temperature or/and magnetic field produces a relative change in resonant frequency according to

$$-2\frac{\Delta f_0}{f_0} = \frac{\Delta X_S}{G_S} + \frac{\Delta X_m}{G_m} + p\frac{\Delta \varepsilon_r}{\varepsilon_r}$$
Temperature stability

Magnetic Field

 A perturbation in temperature or/and magnetic field produces a relative change in resonant frequency according to

$$-2\frac{\Delta f_0}{f_0} = \frac{\Delta X_S}{G_S} + \frac{\Delta X_m}{G_m} + p\frac{\Delta \varepsilon_r}{\varepsilon_r}$$

 Study the different influences of the real and imaginary part of beam coupling impedance on the beam stability.

Magnetic Field

 A perturbation in temperature or/and magnetic field produces a relative change in resonant frequency according to

$$-2\frac{\Delta f_0}{f_0} = \frac{\Delta X_S}{G_S} + \frac{\Delta X_m}{G_m} + p\frac{\Delta \varepsilon_r}{\varepsilon_r}$$

 Study the different influences of the real and imaginary part of beam coupling impedance on the beam stability.

Conclusion & Outlook

- Surface Resistance in all samples is significantly lower than that of copper at 8 GHz up to 9 T
- RF magnetic field strength on the sample at FCC condition does not significantly change the surface resistance value
- Extrapolation to FCC working conditions is favourable for Coated Conductors
- First tests showed that the thermal runaway is no problem
 - ✓ Continue studies

- Investigation of the depinning frequency
 - Beneficial for surface impedance to operate below depinning frequency
- Getting closer to FCC conditions
- Improving resonator configurations to lower frequencies, temperature stability
- HTS behaviour under synchrotron irradiation
 - 'HTS REBaCuO coated conductors for the FCC-hh beam screen: Performance under photon irradiation at the ALBA Synchrotron Light Source'

References

- [1] Ignasi Bellafont, Lotta Mether, and Roberto Kersevan, Study on the beam induced vacuum effects in the FCC-hh beam vacuum chamber', FCC Week 2019 – FCChh accelerator
- [2] P. Krkotić, U. Niedermayer, and O. Boine-Frankenheim, *High-temperature* superconductor coating for coupling impedance reduction in the FCC-hh beam screen' Nuclear Inst. And Methods in Physics Research, A 895, 2018.
- [3] T. Puig et al. ,*Coated Conductor technology for the beam screen chamber of future energy circular colliders*⁺, SUST, to be published.
- [4] R. Vaglio and S. Calatroni *,Advances in the study of HTS Superconductors for the Beam Impedance Mitigation in CERN-FCC : The thermal runaway problem*⁴, Eur. Phys. J. Special Topics, 2018, to be published.
- [5] N. Pompeo, K. Torokhtii, and E. Silva , *Dielectric Resonators for the Measurements* of the Surface Impedance of Superconducting Films', Measurement Science Review, Volume 14, No 3, 2014.
- [6] <u>S. Calatroni and R. Vaglio</u>, *Surface Resistance of Superconductors in the* <u>Presence of a DC Magnetic Field: Frequency and Field Intensity Limits</u>, IEEE <u>Transactions on Applied Superconductivity, Vol. 27, No 5, 2017.</u>