

Advanced European Infrastructures for Detectors at Accelerators

The future version of AIDA-2020 and the roadmap to Horizon Europe

Paolo Giacomelli INFN Bologna

CSN1 Roma, May 28, 2019

History

- FP6: EUDET: 2006-2010
 - Detector development for linear collider
- FP7: AIDA: 2011-2014
 - Detector development for LHC upgrades and linear colliders
 - Project-specific work packages
- FP8: AIDA-2020 started in May 2015
 - Common LC and LHC work packages
 - New communities: large cryogenic neutrino experiments, new topics
 - New innovation measures, with industry
- All projects have a strong leverage on matching funds

Increasing level of integration

Advanced European infrastructure for Detectors at Accelerators

- Collaborative framework
- Infrastructure: common interest
- 19 countries
- 39 beneficiaries
 - + 20 collaborating institutes
- Coordinated by CERN
- Total budget 29.8 M€
- EC contribution 10.0 M€
- Activities:
 - Mainly: Joint Research & Networks (85%)
 - Transnational Access (13%)

https://aida2020.web.cern.ch

Participants bring in complementary competences and a balanced coverage of projects.

Resources

Full costs budget AIDA-2020 = ~ 29 M€
EC contribution = 10 M€

→ all partners contribute with a certain amount of matching funds and the funding rate for the beneficiaries varies between 29% (JRA) and 95% (TA)

Key for involving small countries

Total Person-Months = **2,525.5 PM**

Activities

ACTIVITIES

WP1: Project management and coordination

WP2: Innovation and outreach

WP3: Advanced software

WP4: Micro-electronics and interconnections

WP5: Data acquisition system for beam tests

WP6: Novel high voltage and resistive CMOS sensors

WP7: Advanced hybrid pixel detectors

WP8: Large scale cryogenic liquid detectors

WP9: New support structures and micro-channel cooling

WP10: Beam test facilities

WP11: Irradiation test facilities

WP12: Detector characterisation facilities

WP13: Innovative gas detectors

WP14: Infrastructure for advanced calorimeters

WP15: Upgrade of beam and irradiation test infrastructure

Activities

AIDA-2020 is divided into 15 Work Packages. A Work Package (WP) is a unit of work within the project. The WPs are theoretically independent but they were defined in order to foster synergies in AIDA-2020.

Management and Coordination

• WP1 (MGT): Project management and coordination

Networking Activities

- WP2 (NA1): Innovation and Outreach
- WP3 (NA2): Advanced Software
- WP4 (NA3): Micro-electronics and interconnections
- . WP5 (NA4): Data acquisition system for beam tests
- WP6 (NA5): Novel high voltage and resistive CMOS sensors
- WP7 (NA6): Advanced hybrid pixel detectors
- WP8 (NA7): Large scale cryogenic liquid detectors
- WP9 (NA8): New support structures and micro-channel cooling

Transnational Access

- WP10 (TA1): Beam test facilities
- WP11 (TA2): Irradiation test facilities
- WP12 (TA3): Detector characterisation facilities

Joint Research Activities

- WP13 (JRA1): Innovative gas detectors
- WP14 (JRA2): Infrastructure for advanced calorimeters
- WP15 (JRA3): Upgrade of beam and irradiation test infrastructure

Technology challenges

Pushing detector technologies beyond state-of-the-art

Detector life cycle

Strategy

- European strategy for particle physics
 - Process led by CERN Council
 - Input from global community
- Updates 2012-13, 2019-20
- Future projects have many detector
 R&D issues in common
- EC initiatives unique in creating coherence at European level
 - Closely follow European Strategy

Highlights

- Common micro-chip development
 - Expensive submissions
- Test beam instrumentation
 - Keep pace with increasing precision
- Common test beam DAQ
 - Easy prototype integration, LC and LHC
- Common software frameworks and tools
 - Parallel and vector computing
- Joining forces for novel detectors
 - LHC tracker technology and LC calorimetry -> imaging calorimeter for HL-LHC
- Test infrastructures
 - Mechanics, cooling, optical materials, electromagnetic, irradiation, data base support....

More Highlights

- WP3 VecGeom for CMSSW
- WP5: Common DAQ for LHC & LC beam tests
- WP6: DMAPS beam tests
- WP8: LAr dual phase operation
- WP9: CO₂ facility
- WP13: High-rate µRWELLs
- WP14: Test bench stands
- WP15: Cold irradiations

New Call in Horizon 2020

- Informal information from meeting at Brussels on March 5
- FP8 Call 5: Large initiatives and support measures to foster the innovation potential of research infrastructures:
 - New directions in EC funding instruments, addressing established communities
 - Following consultations with communities to prepare for FP9
 - To be published in summer
- INFRAINNOV-03-2020 Co-Innovation platform for research infrastructure technologies (2020 – xx M€)
 - This is where ATTRACT phase 2 will be
- INFRAINNOV-04-2020 Innovation pilots (2020 yy M€, max zz M€ each)
 - Innovation in light source technologies
 - Innovation in detector technologies
 - Innovation in accelerator technologies
- Deadline March 17, 2020

New Pilot call INFRAINNOV-04-2020

OBJECTIVES

- Integrate the key players of the HEP detector community, unite them behind common goals and interests, based on the major challenges defined with a broad consensus.
- Coordination of transversal R&D activities between different technologies, e.g. between sensors and their read-out electronics and data acquisition, which is essential for the overall progress towards detector systems.
- Maintain the world-class level of the European detector development and test infrastructure.
- Leverage national funding through the matching resources of all participants, thus achieving far more ambitious objectives than with the EC funding alone
- A unique collaborative European platform for coherent and coordinated efforts for detector R&D programmes towards and across future projects in HEP.
- Strong impact on innovation through joint R&D programmes with knowledge transfer to European industry to tackle the challenges of series productions for large-scale experiments.

Upcoming Challenges

- HL-LHC upgrades now moving to production
 - R&D largely done will not guide AIDA++
- New in AIDA-2020 could be expanded
 - Precision mechanics and CO₂ micro-cooling
 - Large cryogenic detectors
- Future lepton colliders
 - Higher precision, less material
 - Requirements for linear and circular machines very similar
 - Except electronics, powering, cooling
 - Circular machines have much higher rates and require continuous powering
 - Need to push limits of particle ID
 - Gaseous tracking
 - Most aggressive requirements may be posed by the Z factory
 - 10000 x LEP statistics

- Future hadron colliders
 - Fast timing for pile-up rejection increasingly important
 - Sensors, electronics and test infrastructures, beam instrumentation
 - Radiation tolerance requirements even more demanding
 - Sensors, electronics and "low-tech": powering
 - Highly granular LAr calorimeters
 - Irradiation facilities
 - Machine learning for fast track and image reconstruction, trigger
- Non-collider experiments

Upcoming Challenges

Sketch of AIDA-2020++

Possible topics:

- Advanced R&D and infrastructure for detectors at future colliders
 - Leptonic colliders
 - Circular
 - Linear
 - Hadronic colliders
- Novel detector technologies for large-scale particle physics experiments
- Innovative software solutions (ML, etc.) for future detectors
 - Triggering
 - Tracking
 - Calorimetry
- Extended neutrino WP with also short baseline neutrino detectors
- Joint R&D programmes with industrial beneficiaries
- Proof of Concept (competitive allocation after start of project) higher risk projects ("blue sky" R&D)

AIDA-2020++

15

Preparation of AIDA-2020++

Actions:

- Sent e-mail requesting for Expressions of Interest (EoI)
 - Deadline for Eols is July 15th
- Based on the EoI received start preparing the new structure of AIDA-2020++
- General meeting at CERN on September 4th
- After the meeting define a Proposal Committee (order 10 persons)
 - Define WPs and respective coordinators
- Prepare the proposal
 - Deadline to submit the proposal 17/03/2020
- If successful, AIDA-2020++ could be funded as early as October 2020

Preparation of Eols

Expression of Interest

- One-page document
 - 2-6 participating institutes (companies as beneficiaries is a plus)
 - Contact for each institute
 - Description of the activity
 - At the level of a Task (not a WP!)
 - List of **Deliverables** (max. 3)
 - Budget estimate
 - Manpower
 - Full cost
 - Including Personnel and other direct costs (1/3 EC contribution, 2/3 matching funds)
 - Do not include overheads!

AIDA-2020++

17

Preparation of EoIs

Meeting Italia

- C. Meroni (and myself) is organising an Italian meeting to try and coordinate the EoIs to be submitted for AIDA-2020++
- Date is 7/6 at 10:00:
 - Agenda: https://agenda.infn.it/event/19410/
 - People interested in submitting EoIs are warmly encouraged to attend

IDEA Collaboration meeting

IDEA

- New detector concept for an experiment at a Circular e⁺e⁻ Collider
 - Proposed by several INFN groups
 - Accepted by both FCC-ee and CEPC
 - Described in both CDRs
- Collaboration meeting in Bologna
 - June 13th and 14th: https://agenda.infn.it/event/19360/
 - Main items
 - Review of the status of the various sub detectors and software
 - Preparation of EoIs for AIDA-2020++
 - Collaboration with foreign institutes (China, Russia, Serbia, Switzerland, USA, UK)
 - Collaboration with industries, CAEN will participate (Eltos also interested)
- Will be preceded, on June 12th and 13th, by a special Software Workshop
 - Aim is to reach a common software framework
 - Participation from CERN, ILC, CLIC, FCC, CEPC and HSF communities

Summary

- AIDA-2020 has already a long history behind it
 - EUDET
 - AIDA
- AIDA-2020 (and its predecessors) has proven to be a very successful example of an EC co-funded scientific project
- The new pilot call INFRAINNOV-04-2020 gives this community the possibility to:
 - Prepare and respond to upcoming challenges represented by future experiments with new accelerator facilities
 - Further improve Academia-Industry collaboration on R&D and infrastructures for detectors at accelerators
 - Develop innovative detectors and complete systems with all the needed services (HV, LV, electronics, cooling, software, DAQ, etc.)
 - Further extend the network of collaborating institutes and researchers
 - Significantly enhance European's excellence in this field

Backup

AIDA-2020++

21

Innovation Pilots

- Objective:
- Support RI*networks developing and implementing a common strategy/roadmap including technological development required for improving their services through partnership with industry;
- Support incremental innovation and cooperation with industry and academia in areas such as scientific instrumentation
- Target:
- Advanced Integrated Activities**, which have reached a high level of integration and can focus on joint research developments
- * RI Research Infrastructure
- ** e.g. AIDA-2020

ATTRACT & AIDA-2020++

ATTRACT

- Emerging communities
- Competitive
- Independent projects
- Fully bottom-up approach
- Break-through development
- Co-innovation for non-HEP markets
- Third-party funding
- Diversifying

Applications outside HEP

AIDA-2020++

- Advanced community
- Collaborative, compete globally
- Interdependent work packages
- Aligned with European Strategy and corresponding roadmaps
- Evolutionary development
- Innovation mainly via preprocurement R&D for HEP
- Leverage on national funding
- Integrating

Applications within HEP

We will establish frameworks for regular information exchange between the two projects

Innovation in AIDA++ and ATTRACT

- Separation between call II-03 and II-04, in particular AIDA++ and ATTRACT
- II-03 aims at innovation for markets outside RI
- II-04 innovation for the delivery of services, or new services of RI
- What is Innovation?
- For ATTRACT: launch of a new product to market
- For us: we are invited to interpret the topic for our community
 - Can be incremental
 - Low and high TRLs**
- * RI Research Infrastructure
- ** TRL Technological readiness level

Main Challenges for a New Proposal

- No Transnational Access:
- This was one of our biggest successes; need to find new ways of directing EC funds to facilities; WP15-type of upgrade ("innovation") activities, network
- Involvement of industrial partners as beneficiaries:
- Works in parallel Accelerator Initiative ARIES; need to understand how to protect their IP; start with known partners
- Emerging roadmap of future collider projects:
- Need to establish our own technological roadmap, in the proposal and during the project, long-term projects require intermediate goals
- Sustainability of matching funds:
- Will need to find ways to demonstrate the long-term commitment of partners

Innovation

- Technology transfer to industry: two pillars:
- 1. Pre-procurement R&D
 - Detector elements needed in large quantities
 - But: not off-the-shelf products
 - After initial R&D: involve industry to adapt design to mass production requirements
 - Then transfer technology and cooperate in qualification of protocols
 - Industrial partners use acquired knowledge in non-HEP markets
- 2. Spin-off to non-HEP applications
 - Typical examples in dosimetry, medical imaging and generic image sensor technologies
 - Starting from higher TRLs
 - Co-innovation effort, often with SME
- Type 1 is more typical for HEP community
- AIDA-2020 supports both

